Wang-Landau method

From SklogWiki
Revision as of 11:31, 18 November 2010 by Nice and Tidy (talk | contribs) (Changed references to Cite format)
Jump to navigation Jump to search

The Wang-Landau method was proposed by F. Wang and D. P. Landau [1] [2] to compute the density of states, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega (E) } , of Potts models; where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega(E) } is the number of microstates of the system having energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } .

Sketches of the method

The Wang-Landau method, in its original version, is a simulation technique designed to achieve a uniform sampling of the energies of the system in a given range. In a standard Metropolis Monte Carlo in the canonical ensemble the probability of a given microstate, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle X } , is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X) \propto \exp \left[ - E(X)/k_B T \right] } ;

whereas for the Wang-Landau procedure one can write:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X) \propto \exp \left[ f(E(X)) \right] }  ;

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(E) } is a function of the energy. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(E) } changes during the simulation in order produce a predefined distribution of energies (usually a uniform distribution); this is done by modifying the values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(E) } to reduce the probability of the energies that have been already visited, i.e. If the current configuration has energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_i } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(E_i) } is updated as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f^{new}(E_i) = f(E_i) - \Delta f }  ;

where it has been considered that the system has discrete values of the energy (as happens in Potts Models), and .

Such a simple scheme is continued until the shape of the energy distribution approaches the one predefined. Notice that this simulation scheme does not produce an equilibrium procedure, since it does not fulfill detailed balance. To overcome this problem, the Wang-Landau procedure consists in the repetition of the scheme sketched above along several stages. In each subsequent stage the perturbation parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta f } is reduced. So, for the last stages the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(E) } hardly changes and the simulation results of these last stages can be considered as a good description of the actual equilibrium system, therefore:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(E) \propto e^{f(E)} \int d X_i \delta( E, E_i ) = e^{f(E)} \Omega(E)} ;

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_i = E(X_i) } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(x,y) } is the Kronecker Delta, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(E) } is the fraction of microstates with energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } obtained in the sampling.

If the probability distribution of energies, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(E) } , is nearly flat (if a uniform distribution of energies is the target), i.e.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(E_i) \simeq 1/n_{E} ; } ; for each value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_i } in the selected range,

with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{E} } being the total number of discrete values of the energy in the range, then the density of states will be given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega(E) \propto \exp \left[ - f(E) \right] }

Microcanonical thermodynamics

Once one knows Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega(E) } with accuracy, one can derive the thermodynamics of the system, since the entropy in the microcanonical ensemble is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S \left( E \right) = k_{B} \log \Omega(E) }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_{B} } is the Boltzmann constant.

Extensions

The Wang-Landau method has inspired a number of simulation algorithms that use the same strategy in different contexts. For example:

Phase equilibria

In the original version one computes the entropy of the system as a function of the internal energy, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } , for fixed conditions of volume, and number of particles. In Refs. [6][7][8] it was shown how the procedure can be applied to compute other thermodynamic potentials that can be subsequently used to locate phase transitions. For instance, one can compute the Helmholtz energy function , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \left( N | V, T \right) } as a function of the number of particle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N } for fixed conditions of volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } , and temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } .

Refinement of the results

It can be convenient to supplement the Wang-Landau algorithm, which does not fulfil detailed balance, with an equilibrium simulation [7][8]. In this equilibrium simulation one can use the final result for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( E \right) } (or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left( N \right) } ) extracted from the Wang-Landau technique as a fixed function to weight the probability of the different configurations. Such a strategy simplifies the estimation of error bars, provides a good test of the results consistency, and can be used to refine the numerical results.

Applications

The Wang-Landau algorithm has been applied successfully to several problems in physics[?] , biology[?] , and chemistry[?] .

See also

References

Related reading