2017: SklogWiki celebrates 10 years on-line

LaTeX math markup

From SklogWiki
Jump to: navigation, search

Note: this page is a subsection of the Wikipedia page Help:Displaying a formula.

Subscripts, superscripts, integrals[edit]

Feature Syntax How it looks rendered
HTML PNG
Superscript a^2 a^{2} a^{2}\,\!
Subscript a_2 a_{2} a_{2}\,\!
Grouping a^{2+2} a^{{2+2}} a^{{2+2}}\,\!
a_{i,j} a_{{i,j}} a_{{i,j}}\,\!
Combining sub & super x_2^3 x_{2}^{3}
Preceding and/or Additional sub & super \sideset{_1^2}{_3^4}\prod_a^b \sideset {_{1}^{2}}{_{3}^{4}}\prod _{a}^{b}
{}_1^2\!\Omega_3^4 {}_{1}^{2}\!\Omega _{3}^{4}
Stacking \overset{\alpha}{\omega} {\overset  {\alpha }{\omega }}
\underset{\alpha}{\omega} {\underset  {\alpha }{\omega }}
\overset{\alpha}{\underset{\gamma}{\omega}} {\overset  {\alpha }{{\underset  {\gamma }{\omega }}}}
\stackrel{\alpha}{\omega} {\stackrel  {\alpha }{\omega }}
Derivative (forced PNG) x', y, f', f\!   x',y'',f',f''\!
Derivative (f in italics may overlap primes in HTML) x', y, f', f x',y'',f',f'' x',y'',f',f''\!
Derivative (wrong in HTML) x^\prime, y^{\prime\prime} x^{\prime },y^{{\prime \prime }} x^{\prime },y^{{\prime \prime }}\,\!
Derivative (wrong in PNG) x\prime, y\prime\prime x\prime ,y\prime \prime x\prime ,y\prime \prime \,\!
Derivative dots \dot{x}, \ddot{x} {\dot  {x}},{\ddot  {x}}
Underlines, overlines, vectors \hat a \ \bar b \ \vec c {\hat  a}\ {\bar  b}\ {\vec  c}
\overrightarrow{a b} \ \overleftarrow{c d} \ \widehat{d e f} \overrightarrow {ab}\ \overleftarrow {cd}\ \widehat {def}
\overline{g h i} \ \underline{j k l} \overline {ghi}\ \underline {jkl}
Arrows A \xleftarrow{n+\mu-1} B \xrightarrow[T]{n\pm i-1} C A{\xleftarrow  {n+\mu -1}}B{\xrightarrow[ {T}]{n\pm i-1}}C
Overbraces \overbrace{ 1+2+\cdots+100 }^{5050} \overbrace {1+2+\cdots +100}^{{5050}}
Underbraces \underbrace{ a+b+\cdots+z }_{26} \underbrace {a+b+\cdots +z}_{{26}}
Sum \sum_{k=1}^N k^2 \sum _{{k=1}}^{N}k^{2}
Sum (force \textstyle) \textstyle \sum_{k=1}^N k^2 \textstyle \sum _{{k=1}}^{N}k^{2}
Product \prod_{i=1}^N x_i \prod _{{i=1}}^{N}x_{i}
Product (force \textstyle) \textstyle \prod_{i=1}^N x_i \textstyle \prod _{{i=1}}^{N}x_{i}
Coproduct \coprod_{i=1}^N x_i \coprod _{{i=1}}^{N}x_{i}
Coproduct (force \textstyle) \textstyle \coprod_{i=1}^N x_i \textstyle \coprod _{{i=1}}^{N}x_{i}
Limit \lim_{n \to \infty}x_n \lim _{{n\to \infty }}x_{n}
Limit (force \textstyle) \textstyle \lim_{n \to \infty}x_n \textstyle \lim _{{n\to \infty }}x_{n}
Integral \int\limits_{-N}^{N} e^x\, dx \int \limits _{{-N}}^{{N}}e^{x}\,dx
Integral (force \textstyle) \textstyle \int\limits_{-N}^{N} e^x\, dx \textstyle \int \limits _{{-N}}^{{N}}e^{x}\,dx
Double integral \iint\limits_{D} \, dx\,dy \iint \limits _{{D}}\,dx\,dy
Triple integral \iiint\limits_{E} \, dx\,dy\,dz \iiint \limits _{{E}}\,dx\,dy\,dz
Quadruple integral \iiiint\limits_{F} \, dx\,dy\,dz\,dt \iiiint \limits _{{F}}\,dx\,dy\,dz\,dt
Path integral \oint\limits_{C} x^3\, dx + 4y^2\, dy \oint \limits _{{C}}x^{3}\,dx+4y^{2}\,dy
Intersections \bigcap_1^{n} p \bigcap _{1}^{{n}}p
Unions \bigcup_1^{k} p \bigcup _{1}^{{k}}p

Fractions, matrices, multilines[edit]

Feature Syntax How it looks rendered
Fractions \frac{2}{4}=0.5 {\frac  {2}{4}}=0.5
Small Fractions \tfrac{2}{4} = 0.5 {\tfrac  {2}{4}}=0.5
Large (normal) Fractions \dfrac{2}{4} = 0.5 {\dfrac  {2}{4}}=0.5
Large (nested) Fractions \cfrac{2}{c + \cfrac{2}{d + \cfrac{2}{4}}} = a {\cfrac  {2}{c+{\cfrac  {2}{d+{\cfrac  {2}{4}}}}}}=a
Binomial coefficients \binom{n}{k} {\binom  {n}{k}}
Small Binomial coefficients \tbinom{n}{k} {\tbinom  {n}{k}}
Large (normal) Binomial coefficients \dbinom{n}{k} {\dbinom  {n}{k}}
Matrices
\begin{matrix}
  x & y \\
  z & v 
\end{matrix}
{\begin{matrix}x&y\\z&v\end{matrix}}
\begin{vmatrix}
  x & y \\
  z & v 
\end{vmatrix}
{\begin{vmatrix}x&y\\z&v\end{vmatrix}}
\begin{Vmatrix}
  x & y \\
  z & v
\end{Vmatrix}
{\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}
\begin{bmatrix}
  0      & \cdots & 0      \\
  \vdots & \ddots & \vdots \\ 
  0      & \cdots & 0
\end{bmatrix}
{\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}
\begin{Bmatrix}
  x & y \\
  z & v
\end{Bmatrix}
{\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}
\begin{pmatrix}
  x & y \\
  z & v 
\end{pmatrix}
{\begin{pmatrix}x&y\\z&v\end{pmatrix}}
\bigl( \begin{smallmatrix}
  a&b\\ c&d
\end{smallmatrix} \bigr)
{\bigl (}{\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}{\bigr )}
Case distinctions
f(n) = 
\begin{cases} 
  n/2,  & \mbox{if }n\mbox{ is even} \\
  3n+1, & \mbox{if }n\mbox{ is odd} 
\end{cases}
f(n)={\begin{cases}n/2,&{\mbox{if }}n{\mbox{ is even}}\\3n+1,&{\mbox{if }}n{\mbox{ is odd}}\end{cases}}
Multiline equations
\begin{align}
 f(x) & = (a+b)^2 \\
      & = a^2+2ab+b^2 \\
\end{align}
{\begin{aligned}f(x)&=(a+b)^{2}\\&=a^{2}+2ab+b^{2}\\\end{aligned}}
\begin{alignat}{2}
 f(x) & = (a-b)^2 \\
      & = a^2-2ab+b^2 \\
\end{alignat}
{\begin{alignedat}{2}f(x)&=(a-b)^{2}\\&=a^{2}-2ab+b^{2}\\\end{alignedat}}
Multiline equations (must define number of colums used ({lcr}) (should not be used unless needed)
\begin{array}{lcl}
  z        & = & a \\
  f(x,y,z) & = & x + y + z  
\end{array}
{\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}
Multiline equations (more)
\begin{array}{lcr}
  z        & = & a \\
  f(x,y,z) & = & x + y + z     
\end{array}
{\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}
Breaking up a long expression so that it wraps when necessary

<math>f(x) \,\!</math>
<math>= \sum_{n=0}^\infty a_n x^n </math>
<math>= a_0+a_1x+a_2x^2+\cdots</math>

f(x)\,\!=\sum _{{n=0}}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots

Simultaneous equations
\begin{cases}
    3x + 5y +  z \\
    7x - 2y + 4z \\
   -6x + 3y + 2z 
\end{cases}
{\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases}}