# TIP4P/2005 model of water

The **TIP4P/2005** model
^{[1]}
is a re-parameterisation of the original TIP4P potential for simulations of water.
TIP4P/2005 is a rigid planar model, having a similar geometry to that of the Bernal and Fowler model.

## Contents

## Parameters[edit]

The TIP4P/2005 model consists of a Lennard-Jones site for the oxygen atom, and three charge sites.

(Å) | HOH , deg | (Å) | (K) | q(O) (e) | q(H) (e) | q(M) (e) | (Å) |

0.9572 | 104.52 | 3.1589 | 93.2 | 0 | 0.5564 | -2q(H) | 0.1546 |

- DL_POLY FIELD file for the TIP4P/2005 model
- GROMACS files for the TIP4P/2005 model
- NAMD files for the TIP4P/2005 model

## Phase diagram[edit]

The phase diagram of the TIP4P/2005 model in the pressure-temperature plane (adapted from Fig. 9a of ^{[2]})
is given in a publication by Abascal, Sanz and Vega ^{[3]} (revisited by Conde et. al. ^{[4]})
and for negative pressures in the publication
^{[5]}.

#### Liquid-vapour equilibria[edit]

^{[6]}

#### Plastic crystal phases[edit]

Recent simulations have suggested the possibility of a plastic crystal phase or phases for water ^{[2]}^{[7]}

#### Supercooled region[edit]

The supercooled region has been studied by Abascal and Vega ^{[8]}, locating a Widom line ^{[9]}, indicating a second critical point for water located at 1350 bar and 193 K.

## Surface tension[edit]

The surface tension has been studied for the TIP4P/2005 model, giving mJ/m^{2} at 300 K using the test area method
^{[10]}, mN/m at 300 K using using the Ewald sums for the dispersion interactions
^{[11]}, mJ/m^{2} at 350 K using the reaction field method
^{[12]} and mN/m at 249 K ^{[13]}.

## Self-diffusion coefficient[edit]

The TIP4P/2005 potential has a self-diffusion coefficient, in bulk water at 298 K, of 0.21 Å^{2} ps^{−1} in a classical simulation of 216 water molecules (experimental value: 0.23 Å^{2} ps^{−1})
^{[14]}. See also ^{[15]}.

## Shear viscosity[edit]

The shear viscosity for the TIP4P/2005 model is 0.855 mPa.s at 298 K and 1 bar ^{[16]} (experimental value 0.896 mPa.s ^{[17]}).

## Liquid-liquid critical point[edit]

For the TIP4P/2005 model the liquid-liquid critical point is located at: K, MPa and having a density of kg/m^{3} ^{[18]}. K, MPa and having a density of kg/m^{3} ^{[19]}.

## Structure factor[edit]

The structure factor, in particular for small wave vectors, has been calculated by Sedlmeier, Horinek and Netz ^{[20]}, who observe that the TIP4P/2005 model yields an "almost quantitative agreement".

## Virial coefficients[edit]

The second virial coefficient has been calculated by Chialvo et al ^{[21]}.

## Thermal conductivity[edit]

Thermal conductivity ^{[22]}.

## Melting point[edit]

K ^{[23]}.

## References[edit]

- ↑ J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics,
**123**234505 (2005) - ↑
^{2.0}^{2.1}J. L. Aragones and C. Vega "Plastic crystal phases of simple water models", Journal of Chemical Physics**130**244504 (2009) - ↑ Jose L. F. Abascal, Eduardo Sanz and Carlos Vega "Triple points and coexistence properties of the dense phases of water calculated using computer simulation", Physical Chemistry Chemical Physics
**11**pp. 556-562 (2009) - ↑ M. M. Conde , M. A. Gonzalez , J. L. F. Abascal and C. Vega "Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the TIP4P/2005 model revisited", Journal of Chemical Physics
**139**154505 (2013) - ↑ M. M. Conde, C. Vega, G. A. Tribello, and B. Slater "The phase diagram of water at negative pressures: Virtual ices", Journal of Chemical Physics
**131**034510 (2009) - ↑ C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics
**125**034503 (2006) - ↑ J. L. Aragones, M. M. Conde, E. G. Noya and C. Vega "The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase", Physical Chemistry Chemical Physics
**11**pp. 543- (2009) - ↑ J. L. F. Abascal and C. Vega "Note: Equation of state and compressibility of supercooled water: Simulations and experiment", Journal of Chemical Physics
**134**186101 (2011) - ↑ K. T. Wikfeldt, C. Huang, A. Nilsson, and L. G. M. Pettersson "Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water", Journal of Chemical Physics
**134**214506 (2011) - ↑ C. Vega and E. de Miguel "Surface tension of the most popular models of water by using the test-area simulation method", Journal of Chemical Physics
**126**154707 (2007) - ↑ José Alejandre and Gustavo A. Chapela "The surface tension of TIP4P/2005 water model using Ewald sums for the dispersion interactions", Journal of Chemical Physics
**132**014701 (2010) - ↑ J. M. Míguez, D. González-Salgado, J. L. Legido, and M. M. Piñeiro "Calculation of interfacial properties using molecular simulation with the reaction field method: Results for different water models", Journal of Chemical Physics
**132**184102 (2010) - ↑ Ryuji Sakamaki, Amadeu K. Sum, Tetsu Narumi, and Kenji Yasuoka "Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models", Journal of Chemical Physics
**134**124708 (2011) - ↑ Thomas E. Markland, Scott Habershon, and David E. Manolopoulos "Quantum diffusion of hydrogen and muonium atoms in liquid water and hexagonal ice", Journal of Chemical Physics
**128**194506 (2008) - ↑ Dmitri Rozmanov and Peter G. Kusalik "Transport coefficients of the TIP4P-2005 water model", Journal of Chemical Physics
**136**044507 (2012) - ↑ Miguel Angel González and José L. F. Abascal "The shear viscosity of rigid water models", Journal of Chemical Physics
**132**096101 (2010) - ↑ Kenneth R. Harris and Lawrence A. Woolf "Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures", Journal of Chemical & Engineering Data
**49**pp. 1064-1069 (2004) - ↑ José L. F. Abascal and Carlos Vega "Widom line and the liquid–liquid critical point for the TIP4P/2005 water model", Journal of Chemical Physics
**133**234502 (2010) - ↑ Rakesh S. Singh, John W. Biddle, Pablo G. Debenedetti and Mikhail A. Anisimov "Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water", Journal of Chemical Physics
**144**144504 (2016) - ↑ Felix Sedlmeier, Dominik Horinek, and Roland R. Netz "Spatial Correlations of Density and Structural Fluctuations in Liquid Water: A Comparative Simulation Study", Journal of the American Chemical Society Article ASAP (2011)
- ↑ Ariel A. Chialvo, Albert Bartók and András Baranyai "On the re-engineered TIP4P water models for the prediction of vapor–liquid equilibrium", Journal of Molecular Liquids
**129**pp. 120-124 (2006) - ↑ Frank Römer, Anders Lervik, and Fernando Bresme "Nonequilibrium molecular dynamics simulations of the thermal conductivity of water: A systematic investigation of the SPC/E and TIP4P/2005 models", Journal of Chemical Physics
**137**074503 (2012) - ↑ M. M. Conde, M. Rovere, and P. Gallo "High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique", Journal of Chemical Physics
**147**244506 (2017)

**Related reading**

- Helena L. Pi, Juan L. Aragones, Carlos Vega, Eva G. Noya, Jose L. F. Abascal, Miguel A. Gonzalez and Carl McBride "Anomalies in water as obtained from computer simulations of the TIP4P/2005 model: density maxima, and density, isothermal compressibility and heat capacity minima", Molecular Physics
**107**pp. 365-374 (2009) - Miguel A. González, Chantal Valeriani, Frédéric Caupin and José L. F. Abascal "A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model", Journal of Chemical Physics
**145**054505 (2016) - Philip H. Handle and Francesco Sciortino "Potential energy landscape of TIP4P/2005 water", Journal of Chemical Physics
**148**134505 (2018)