Universality classes: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added internal links to the models)
(Added short description for \eta)
 
(3 intermediate revisions by 3 users not shown)
Line 13: Line 13:
|  ||  ||    || || || ||  ||Directed percolation
|  ||  ||    || || || ||  ||Directed percolation
|-  
|-  
| 2 ||  0 || <math>1/8</math> || <math>7/4</math> || || 1  || 1/4  ||  2D Ising
| 2 ||  0 || 1/8  || 7/4 || || 1  || 1/4  ||  2D Ising
|-  
|-  
| 3 ||  0.1096(5)  || 0.32653(10)  ||  1.2373(2)    || 4.7893(8) ||  0.63012(16) || 0.03639(15) ||  3D Ising
| 3 ||  0.1096(5)  || 0.32653(10)  ||  1.2373(2)    || 4.7893(8) ||  0.63012(16) || 0.03639(15) ||  3D Ising
Line 19: Line 19:
|  ||    ||    || || || ||  ||Local linear interface
|  ||    ||    || || || ||  ||Local linear interface
|-  
|-  
| ||  0 || <math>1/2</math>   || 1  || || || || Mean-field
| any ||  0 || 1/2  || 1  || 3 || 1/2 || 0 || Mean-field
|-  
|-  
|  ||  ||    || || || ||  ||Molecular beam epitaxy
|  ||  ||    || || || ||  ||Molecular beam epitaxy
Line 32: Line 32:
*<math>\beta</math>  is known as the  [[Critical exponents#Magnetic order parameter exponent | magnetic order parameter exponent]]
*<math>\beta</math>  is known as the  [[Critical exponents#Magnetic order parameter exponent | magnetic order parameter exponent]]
*<math>\gamma</math> is known as  the [[Critical exponents#Susceptibility exponent |susceptibility exponent ]]
*<math>\gamma</math> is known as  the [[Critical exponents#Susceptibility exponent |susceptibility exponent ]]
*<math>\nu</math> is known as the [[Critical exponents#Correlation length | correlation length]]
*<math>\delta</math> is known as  the [[Critical exponents#Equation of state exponent |equation of state exponent ]]
*<math>\eta</math> is known as...
*<math>\nu</math> is known as the [[Critical exponents#Correlation length | correlation length exponent]]
 
*<math>\eta</math> is known as the anomalous dimension in the critical correlation function.  
=Derivations=
==3-state Potts==
==3-state Potts==
[[Potts model]]
[[Potts model]]
Line 124: Line 125:
====Susceptibility exponent: <math>\gamma</math>====
====Susceptibility exponent: <math>\gamma</math>====
(final result: <math>\gamma=1</math>)
(final result: <math>\gamma=1</math>)
====Equation of state exponent: <math>\delta</math>====
(final result: <math>\delta=3</math>)
====Correlation length exponent: <math>\nu</math>====
(final result: <math>\nu=1/2</math>)
====Correlation function exponent: <math>\eta</math>====
(final result: <math>\eta=0</math>)
==Molecular beam epitaxy==
==Molecular beam epitaxy==
==Random-field==
==Random-field==
Line 150: Line 157:
\eta =0.0380(4)
\eta =0.0380(4)
</math>
</math>
 
=References=
==References==
<references/>
<references/>
[[category: Renormalisation group]]
[[category: Renormalisation group]]

Latest revision as of 06:51, 5 November 2021

Universality classes are groups of models that have the same set of critical exponents

dimension class
3-state Potts
Ashkin-Teller
Chiral
Directed percolation
2 0 1/8 7/4 1 1/4 2D Ising
3 0.1096(5) 0.32653(10) 1.2373(2) 4.7893(8) 0.63012(16) 0.03639(15) 3D Ising
Local linear interface
any 0 1/2 1 3 1/2 0 Mean-field
Molecular beam epitaxy
Random-field
3 −0.0146(8) 0.3485(2) 1.3177(5) 4.780(2) 0.67155(27) 0.0380(4) XY

where

Derivations[edit]

3-state Potts[edit]

Potts model

Ashkin-Teller[edit]

Ashkin-Teller model

Chiral[edit]

Directed percolation[edit]

Ising[edit]

The Hamiltonian of the Ising model is


where and the summation runs over the lattice sites.

The order parameter is

In two dimensions, Onsager obtained the exact solution in the absence of a external field, and the critical exponents are

(In fact, the specific heat diverges logarithmically with the critical temperature)

along with [1]:


In three dimensions, the critical exponents are not known exactly. However, Monte Carlo simulations and Renormalisation group analysis provide accurate estimates [2]:

with a critical temperature of [3]. In four and higher dimensions, the critical exponents are mean-field with logarithmic corrections.

Local linear interface[edit]

Mean-field[edit]

The critical exponents of are derived as follows [4]:

Heat capacity exponent: [edit]

(final result: )

Magnetic order parameter exponent: [edit]

(final result: )

Susceptibility exponent: [edit]

(final result: )

Equation of state exponent: [edit]

(final result: )

Correlation length exponent: [edit]

(final result: )

Correlation function exponent: [edit]

(final result: )

Molecular beam epitaxy[edit]

Random-field[edit]

XY[edit]

For the three dimensional XY model one has the following critical exponents[5]:

References[edit]