Difference between revisions of "TIP4P/2005 model of water"

From SklogWiki
Jump to: navigation, search
m (Changed all references to Cite format.)
(No difference)

Revision as of 16:48, 23 February 2010

The TIP4P/2005 model [1] is a re-parameterisation of the original TIP4P potential for simulations of water. TIP4P/2005 is a rigid planar model, having a similar geometry to the Bernal and Fowler model.


Four site water model.png

r_{\mathrm {OH}} (Å) \angleHOH , deg \sigma (Å) \epsilon/k (K) q(O) (e) q(H) (e) q(M) (e) r_{\mathrm {OM}} (Å)
0.9572 104.52 3.1589 93.2 0 0.5564 -2q(H) 0.1546

Phase diagram

TIP4P 2005 phase diagram.png

The phase diagram of the TIP4P/2005 model is given in a publication by Abascal, Sanz and Vega [2] and for negative pressures in the publication [3]

Liquid-vapour equilibria


Plastic crystal phases

Recent simulations have suggested the possibility of a plastic crystal phase or phases for water [5] [6]

Surface tension

The surface tension has been studied for the TIP4P/2005 model [7] [8]

Self-diffusion coefficient

The TIP4P/2005 potential has a self-diffusion coefficient, in bulk water at 298 K, of 0.21 Å2 ps−1 in a classical simulation of 216 water molecules (experimental value: 0.23 Å2 ps−1) [9].


  1. J. L. F. Abascal and C. Vega "A general purpose model for the condensed phases of water: TIP4P/2005", Journal of Chemical Physics, 123 234505 (2005)
  2. Jose L. F. Abascal, Eduardo Sanz and Carlos Vega "Triple points and coexistence properties of the dense phases of water calculated using computer simulation", Physical Chemistry Chemical Physics 11 pp. 556-562 (2009)
  3. M. M. Conde, C. Vega, G. A. Tribello, and B. Slater "The phase diagram of water at negative pressures: Virtual ices", Journal of Chemical Physics 131 034510 (2009)
  4. C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics 125 034503 (2006)
  5. J. L. Aragones, M. M. Conde, E. G. Noya and C. Vega "The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: the appearance of a plastic crystal phase", Physical Chemistry Chemical Physics 11 pp. 543- (2009)
  6. J. L. Aragones and C. Vega "Plastic crystal phases of simple water models", Journal of Chemical Physics 130 244504 (2009)
  7. C. Vega and E. de Miguel "Surface tension of the most popular models of water by using the test-area simulation method", Journal of Chemical Physics 126 154707 (2007)
  8. José Alejandre and Gustavo A. Chapela "The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions", Journal of Chemical Physics 132 014701 (2010)
  9. Thomas E. Markland, Scott Habershon, and David E. Manolopoulos "Quantum diffusion of hydrogen and muonium atoms in liquid water and hexagonal ice", Journal of Chemical Physics 128 194506 (2008)

Related reading

External links and resources

40px-Stop hand nuvola.svg.png This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.