Difference between revisions of "Supercooling and nucleation"

From SklogWiki
Jump to: navigation, search
m (Fixed LaTeX math markup)
m (References: Added a recent publication)
Line 31: Line 31:
 
*[http://dx.doi.org/10.1103/PhysRevLett.105.088302 Ran Ni, Simone Belli, René van Roij, and Marjolein Dijkstra "Glassy Dynamics, Spinodal Fluctuations, and the Kinetic Limit of Nucleation in Suspensions of Colloidal Hard Rods", Physical Review Letters '''105''' 088302 (2010)]
 
*[http://dx.doi.org/10.1103/PhysRevLett.105.088302 Ran Ni, Simone Belli, René van Roij, and Marjolein Dijkstra "Glassy Dynamics, Spinodal Fluctuations, and the Kinetic Limit of Nucleation in Suspensions of Colloidal Hard Rods", Physical Review Letters '''105''' 088302 (2010)]
 
*[http://dx.doi.org/10.1063/1.4747326  M. D. Ediger and Peter Harrowell "Perspective: Supercooled liquids and glasses", Journal of Chemical Physics '''137''' 080901 (2012)]
 
*[http://dx.doi.org/10.1063/1.4747326  M. D. Ediger and Peter Harrowell "Perspective: Supercooled liquids and glasses", Journal of Chemical Physics '''137''' 080901 (2012)]
 +
*[https://doi.org/10.1063/1.5034091 Edgar D. Zanotto and Daniel R. Cassar "The race within supercooled liquids—Relaxation versus crystallization", Journal of Chemical Physics '''149''' 024503 (2018)]
 
;Books
 
;Books
 
*[http://dx.doi.org/10.1016/S0081-1947(08)60604-9 David T. Wu "Nucleation Theory", Solid State Physics '''50''' pp. 37-187 (1996)]
 
*[http://dx.doi.org/10.1016/S0081-1947(08)60604-9 David T. Wu "Nucleation Theory", Solid State Physics '''50''' pp. 37-187 (1996)]

Revision as of 12:06, 17 July 2018

Supercooling, undercooling and nucleation.

Volmer and Weber kinetic model

Volmer and Weber kinetic model [1] results in the following nucleation rate:

I^{VW} = N^{eq}(n^*) k^+(n^*) =   k^+(n^*) N_A \exp \left( -\frac{W(n^*)}{k_BT}  \right)

Szilard nucleation model

Homogeneous nucleation temperature

The homogeneous nucleation temperature (T_H) is the temperature below which it is almost impossible to avoid spontaneous and rapid freezing.

Zeldovich factor

The Zeldovich factor [2] (Z) modifies the Volmer and Weber expression \eqref{eq_IVW}, making it applicable to spherical clusters:

Z= \sqrt{\frac{ \vert \Delta \mu \vert }{6 \pi k_B T n^*}}

Zeldovich-Frenkel equation

Zeldovich-Frenkel master equation is given by

\frac{\partial N(n, t)}{\partial t} =  \frac{\partial }{\partial n}  \left( k^+  (n) N^{eq} (n) \frac{\partial }{\partial n}  \left( \frac{N(n, t)}{N^{eq}(n)} \right)  \right).

See also Shizgal and Barrett [3].

Nucleation theorem

See also

References

  1. M. Volmer and A. Weber "Keimbildung in übersättigten Gebilden", Zeitschrift für Physikalische Chemie 119 pp. 277-301 (1926)
  2. J. B. Zeldovich "On the theory of new phase formation, cavitation", Acta Physicochimica URSS 18 pp. 1-22 (1943)
  3. B. Shizgal and J. C. Barrett "Time dependent nucleation", Journal of Chemical Physics 91 pp. 6505-6518 (1989)
Related reading
Books