Second virial coefficient: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Isihara-Hadwiger formula: Corrected journal title)
m (Added some information on evaluation of the integral)
Line 2: Line 2:
The second virial coefficient, in three dimensions, is given by
The second virial coefficient, in three dimensions, is given by


:<math>B_{2}(T)= - \frac{1}{2} \int \left( \left\langle \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right)\right\rangle -1 \right) 4 \pi r^2 dr </math>  
:<math>B_{2}(T)= - \frac{1}{2} \int \left( \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right) -1 \right) 4 \pi r^2 dr </math>  


where <math>\Phi_{12}({\mathbf r})</math> is the [[intermolecular pair potential]], ''T'' is the [[temperature]] and <math>k_B</math> is the [[Boltzmann constant]]. Notice that the expression within the parenthesis  
where <math>\Phi_{12}({\mathbf r})</math> is the [[intermolecular pair potential]], ''T'' is the [[temperature]] and <math>k_B</math> is the [[Boltzmann constant]]. Notice that the expression within the parenthesis  
of the integral is the [[Mayer f-function]].
of the integral is the [[Mayer f-function]].
In practice  the integral is often ''very hard'' to integrate analytically for anything other than, say, the [[Hard sphere: virial coefficients | hard sphere model]], thus one numerically evaluates
:<math>B_{2}(T)= - \frac{1}{2} \int \left( \left\langle \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right)\right\rangle -1 \right) 4 \pi r^2 dr </math>
calculating
:<math> \left\langle \exp\left(-\frac{\Phi_{12}({\mathbf r})}{k_BT}\right)\right\rangle</math>
for each <math>r</math> using the numerical integration scheme proposed by Harold Conroy <ref>[http://dx.doi.org/10.1063/1.1701795 Harold Conroy "Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional Integrals", Journal of Chemical Physics '''47''' pp. 5307 (1967)]</ref><ref>[http://dx.doi.org/10.1007/BF01597437 I. Nezbeda, J. Kolafa and S. Labík "The spherical harmonic expansion coefficients and multidimensional integrals in theories of liquids", Czechoslovak Journal of Physics '''39''' pp. 65-79 (1989)]</ref>.
==Isihara-Hadwiger formula==
==Isihara-Hadwiger formula==
The Isihara-Hadwiger formula was discovered simultaneously and independently by Isihara
The Isihara-Hadwiger formula was discovered simultaneously and independently by Isihara

Revision as of 17:08, 3 May 2011

The second virial coefficient is usually written as B or as . The second virial coefficient represents the initial departure from ideal-gas behaviour. The second virial coefficient, in three dimensions, is given by

where is the intermolecular pair potential, T is the temperature and is the Boltzmann constant. Notice that the expression within the parenthesis of the integral is the Mayer f-function.

In practice the integral is often very hard to integrate analytically for anything other than, say, the hard sphere model, thus one numerically evaluates

calculating

for each using the numerical integration scheme proposed by Harold Conroy [1][2].

Isihara-Hadwiger formula

The Isihara-Hadwiger formula was discovered simultaneously and independently by Isihara [3] [4] [5] and the Swiss mathematician Hadwiger in 1950 [6] [7] [8] The second virial coefficient for any hard convex body is given by the exact relation

or

where

where is the volume, , the surface area, and the mean radius of curvature.

Hard spheres

For the hard sphere model one has [9]

leading to

Note that for the hard sphere is independent of temperature. See also: Hard sphere: virial coefficients.

Van der Waals equation of state

For the Van der Waals equation of state one has:

For the derivation click here.

Excluded volume

The second virial coefficient can be computed from the expression

where is the excluded volume.

See also

References

Related reading