Pair distribution function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
Line 2: Line 2:
([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as
([[canonical ensemble]]) interacting via the `central' [[intermolecular pair potential]] <math>\Phi(r)</math>, the two particle distribution function is defined as


:<math>{\rm g}_N^{(2)}(r_1,r_2)= V^2 \frac
:<math>{\rm g}_N^{(2)}({\mathbf r}_1,{\mathbf r}_2)= V^2 \frac{\int ... \int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_3...{\rm d}{\mathbf r}_N}{\int e^{-\beta \Phi({\mathbf r}_1,...,{\mathbf r}_N)}{\rm d}{\mathbf r}_1...{\rm d}{\mathbf r}_N}</math>
{\int ... \int e^{-\beta \Phi(r_1,...,r_N)}{\rm d}r_3...{\rm d}r_N}
{\int e^{-\beta \Phi(r_1,...,r_N){\rm d}r_1...{\rm d}r_N}}</math>


where <math>\beta = 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]].
where <math>\beta = 1/(k_BT)</math>, where <math>k_B</math> is the [[Boltzmann constant]].
Line 12: Line 10:
:<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) -  \frac{\Phi(r_{13})}{kT} - E(r_{13})  \right)(g(r_{23}) -1)  ~{\rm d}r_3</math>
:<math>\ln g(r_{12}) + \frac{\Phi(r_{12})}{kT} - E(r_{12}) = n \int \left(g(r_{13}) -1 - \ln g(r_{13}) -  \frac{\Phi(r_{13})}{kT} - E(r_{13})  \right)(g(r_{23}) -1)  ~{\rm d}r_3</math>


 
where <math>r_{12} = |{\mathbf r}_2 - {\mathbf r}_1|</math>.
==See also==
==See also==
*[[Radial distribution function]]
*[[Radial distribution function]]

Revision as of 16:15, 10 July 2007

For a fluid of particles, enclosed in a volume at a given temperature (canonical ensemble) interacting via the `central' intermolecular pair potential , the two particle distribution function is defined as

where , where is the Boltzmann constant.

Exact convolution equation for

See Eq. 5.10 of Ref. 1:

where .

See also

References

  1. J. S. Rowlinson "The equation of state of dense systems", Reports on Progress in Physics 28 pp. 169-199 (1965)