Combining rules: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(→‎Lorentz-Berthelot rules: Added another publication (LB rules are poor))
Line 1: Line 1:
The '''combining rules'''  are geometric expressions designed to provide the interaction energy between two dissimilar non-bonded atoms (here labelled <math>i</math> and <math>j</math>). Most of the rules are designed to be used with a specific [[Idealised models| interaction potential]] in mind. (''See also'' [[Mixing rules]]).
The '''combining rules'''  are geometric expressions designed to provide the interaction energy between two dissimilar non-bonded atoms (here labelled UNIQ879f6b467d81d4c5-math-0000008B-QINU and UNIQ879f6b467d81d4c5-math-0000008C-QINU). Most of the rules are designed to be used with a specific [[Idealised models| interaction potential]] in mind. (''See also'' [[Mixing rules]]).
==Böhm-Ahlrichs==
==Böhm-Ahlrichs==
<ref>[http://dx.doi.org/10.1063/1.444057 Hans‐Joachim Böhm and Reinhart Ahlrichs "A study of short‐range repulsions", Journal of Chemical Physics '''77''' pp. 2028- (1982)]</ref>
UNIQ879f6b467d81d4c5-ref-0000008D-QINU
==Diaz Peña-Pando-Renuncio==
==Diaz Peña-Pando-Renuncio==
<ref>[http://dx.doi.org/10.1063/1.442726 M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. I. Rules based on approximations for the long-range dispersion energy", Journal of Chemical Physics  '''76''' pp. 325- (1982)]</ref>
UNIQ879f6b467d81d4c5-ref-0000008E-QINU
<ref>[http://dx.doi.org/10.1063/1.442727 M. Diaz Peña, C. Pando, and J. A. R. Renuncio "Combination rules for intermolecular potential parameters. II. Rules based on approximations for the long-range dispersion energy and an atomic distortion model for the repulsive interactions", Journal of Chemical Physics '''76''' pp. 333- (1982)]</ref>
UNIQ879f6b467d81d4c5-ref-0000008F-QINU
==Fender-Halsey==
==Fender-Halsey==
The Fender-Halsey combining rule for the [[Lennard-Jones model]] is given by <ref>[http://dx.doi.org/10.1063/1.1701284 B. E. F. Fender and G. D. Halsey, Jr. "Second Virial Coefficients of Argon, Krypton, and Argon-Krypton Mixtures at Low Temperatures", Journal of Chemical Physics '''36''' pp.  1881-1888 (1962)]</ref>
The Fender-Halsey combining rule for the [[Lennard-Jones model]] is given by UNIQ879f6b467d81d4c5-ref-00000090-QINU
:<math>\epsilon_{ij} = \frac{2 \epsilon_i \epsilon_j}{\epsilon_i + \epsilon_j}</math>
:UNIQ879f6b467d81d4c5-math-00000091-QINU
==Gilbert-Smith==
==Gilbert-Smith==
The Gilbert-Smith rules for the [[Born-Huggins-Meyer potential]]<ref>[http://dx.doi.org/10.1063/1.1670463 T. L. Gilbert "Soft‐Sphere Model for Closed‐Shell Atoms and Ions", Journal of Chemical Physics '''49''' pp. 2640- (1968)]</ref><ref>[http://dx.doi.org/10.1063/1.431848 T. L. Gilbert, O. C. Simpson, and M. A. Williamson "Relation between charge and force parameters of closed‐shell atoms and ions", Journal of Chemical Physics '''63''' pp. 4061- (1975)]</ref><ref>[http://dx.doi.org/10.1103/PhysRevA.5.1708 Felix T. Smith "Atomic Distortion and the Combining Rule for Repulsive Potentials", Physical Review A '''5''' pp. 1708-1713 (1972)]</ref>.
The Gilbert-Smith rules for the [[Born-Huggins-Meyer potential]]UNIQ879f6b467d81d4c5-ref-00000092-QINUUNIQ879f6b467d81d4c5-ref-00000093-QINUUNIQ879f6b467d81d4c5-ref-00000094-QINU.
==Good-Hope rule==
==Good-Hope rule==
The Good-Hope rule for [[Mie potential |Mie]]–[[Lennard-Jones model |Lennard‐Jones]] or [[Buckingham potential]]s <ref>[http://dx.doi.org/10.1063/1.1674022  Robert J. Good and Christopher J. Hope "New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions", Journal of Chemical Physics '''53''' pp. 540- (1970)]</ref> is given by (Eq. 2):
The Good-Hope rule for [[Mie potential |Mie]]–[[Lennard-Jones model |Lennard‐Jones]] or [[Buckingham potential]]s UNIQ879f6b467d81d4c5-ref-00000095-QINU is given by (Eq. 2):


:<math>\sigma_{ij} = \sqrt{\sigma_{ii} \sigma_{jj}}</math>
:UNIQ879f6b467d81d4c5-math-00000096-QINU
==Hudson and McCoubrey==
==Hudson and McCoubrey==
<ref>[http://dx.doi.org/10.1039/TF9605600761 G. H. Hudson and J. C. McCoubrey "Intermolecular forces between unlike molecules. A more complete form of the combining rules", Transactions of the Faraday Society '''56''' pp.  761-766 (1960)]</ref>
UNIQ879f6b467d81d4c5-ref-00000097-QINU
==Hogervorst rules==
==Hogervorst rules==
The Hogervorst rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1016/0031-8914(71)90138-8    W. Hogervorst "Transport and equilibrium properties of simple gases and forces between like and unlike atoms", Physica '''51''' pp. 77-89 (1971)]</ref>:
The Hogervorst rules for the [[Exp-6 potential]] UNIQ879f6b467d81d4c5-ref-00000098-QINU:


:<math>\epsilon_{12} = \frac{2 \epsilon_{11} \epsilon_{22}}{\epsilon_{11} + \epsilon_{22}}</math>
:UNIQ879f6b467d81d4c5-math-00000099-QINU


and
and


:<math>\alpha_{12}=\frac{1}{2} (\alpha_{11} + \alpha_{22})</math>
:UNIQ879f6b467d81d4c5-math-0000009A-QINU


==Kong rules==
==Kong rules==
The Kong rules for the [[Lennard-Jones model]] are given by (Table I in  
The Kong rules for the [[Lennard-Jones model]] are given by (Table I in  
<ref>[http://dx.doi.org/10.1063/1.1680358 Chang Lyoul Kong "Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential", Journal of Chemical Physics '''59''' pp. 2464-2467 (1973)]</ref>):
UNIQ879f6b467d81d4c5-ref-0000009B-QINU):


:<math>\epsilon_{ij}\sigma_{ij}^{6}=\left(\epsilon_{ii}\sigma_{ii}^{6}\epsilon_{jj}\sigma_{jj}^{6}\right)^{1/2}</math>
:UNIQ879f6b467d81d4c5-math-0000009C-QINU


:<math> \epsilon_{ij}\sigma_{ij}^{12} =
:UNIQ879f6b467d81d4c5-math-0000009D-QINU
\left[
\frac{
  (\epsilon_{ii}\sigma_{ii}^{12})^{1/13}
  +
  (\epsilon_{jj}\sigma_{jj}^{12})^{1/13}
  }{2}
\right]^{13}
</math>
==Kong-Chakrabarty  rules==
==Kong-Chakrabarty  rules==
The Kong-Chakrabarty rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1021/j100640a019 Chang Lyoul Kong , Manoj R. Chakrabarty "Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential", Journal of Physical Chemistry '''77''' pp. 2668-2670 (1973)]</ref> are given by (Eqs. 2-4):
The Kong-Chakrabarty rules for the [[Exp-6 potential]] UNIQ879f6b467d81d4c5-ref-0000009E-QINU are given by (Eqs. 2-4):


:<math>\left[ \frac{\epsilon_{12}\alpha_{12} e^{\alpha_{12}}}{(\alpha_{12}-6)\sigma_{12}} \right]^{2\sigma_{12}/\alpha_{12}}=
:UNIQ879f6b467d81d4c5-math-0000009F-QINU
\left[ \frac{\epsilon_{11}\alpha_{11} e^{\alpha_{11}}}{(\alpha_{11}-6)\sigma_{11}} \right]^{\sigma_{11}/\alpha_{11}}
\left[ \frac{\epsilon_{22}\alpha_{22} e^{\alpha_{22}}}{(\alpha_{22}-6)\sigma_{22}} \right]^{\sigma_{22}/\alpha_{22}}
</math>


:<math>\frac{\sigma_{12}}{\alpha_{12}}= \frac{1}{2} \left( \frac{\sigma_{11}}{\alpha_{11}} +  \frac{\sigma_{22}}{\alpha_{22}} \right)</math>
:UNIQ879f6b467d81d4c5-math-000000A0-QINU


and
and


:<math>\frac{\epsilon_{12}\alpha_{12}\sigma_{12}^6}{(\alpha_{12}-6)} = \left[\frac{\epsilon_{11}\alpha_{11}\sigma_{11}^6}{(\alpha_{11}-6)}  \frac{\epsilon_{22}\alpha_{22}\sigma_{22}^6}{(\alpha_{22}-6)}  \right]^{\frac{1}{2}}</math>
:UNIQ879f6b467d81d4c5-math-000000A1-QINU


==Lorentz-Berthelot rules==
==Lorentz-Berthelot rules==
The Lorentz rule is given by <ref>[http://dx.doi.org/10.1002/andp.18812480110 H. A. Lorentz "Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase", Annalen der Physik '''12''' pp. 127-136 (1881)]</ref>
The Lorentz rule is given by UNIQ879f6b467d81d4c5-ref-000000A2-QINU
:<math>\sigma_{ij} = \frac{\sigma_{ii} + \sigma_{jj}}{2}</math>
:UNIQ879f6b467d81d4c5-math-000000A3-QINU


which is only really valid for the [[hard sphere model]].
which is only really valid for the [[hard sphere model]].


The Berthelot rule is given by <ref>[http://visualiseur.bnf.fr/Document/CadresPage?O=NUMM-3082&I=1703 Daniel Berthelot "Sur le mélange des gaz", Comptes rendus hebdomadaires des séances de l’Académie des Sciences, '''126''' pp. 1703-1855 (1898)]</ref>
The Berthelot rule is given by UNIQ879f6b467d81d4c5-ref-000000A4-QINU


:<math>\epsilon_{ij} = \sqrt{\epsilon_{ii} \epsilon_{jj}}</math>
:UNIQ879f6b467d81d4c5-math-000000A5-QINU


These rules are simple and widely used, but are not without their failings <ref>[http://dx.doi.org/10.1080/00268970010020041 Jérôme Delhommelle; Philippe Millié "Inadequacy of the Lorentz-Berthelot combining rules for accurate predictions of equilibrium properties by molecular simulation", Molecular Physics '''99''' pp. 619-625  (2001)]</ref>
These rules are simple and widely used, but are not without their failings UNIQ879f6b467d81d4c5-ref-000000A6-QINU
<ref>[http://dx.doi.org/10.1080/00268970802471137 Dezso Boda and Douglas Henderson "The effects of deviations from Lorentz-Berthelot rules on the properties of a simple mixture", Molecular Physics '''106''' pp. 2367-2370 (2008)]</ref>
UNIQ879f6b467d81d4c5-ref-000000A7-QINU
<ref>[http://dx.doi.org/10.1063/1.1610435 W. Song, P. J. Rossky, and M. Maroncelli "Modeling alkane+perfluoroalkane interactions using all-atom potentials: Failure of the usual combining rules", Journal of Chemical Physics '''119''' pp. 9145- (2003)]</ref>
UNIQ879f6b467d81d4c5-ref-000000A8-QINU
<ref>[http://dx.doi.org/10.1063/1.4867498  Caroline Desgranges and Jerome Delhommelle "Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. III. Impact of combining rules on mixtures properties", Journal of Chemical Physics '''140''' 104109 (2014)]</ref>.
UNIQ879f6b467d81d4c5-ref-000000A9-QINU.


==Mason-Rice rules==   
==Mason-Rice rules==   
The Mason-Rice rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1063/1.1740100 Edward A. Mason and William E. Rice "The Intermolecular Potentials of Helium and Hydrogen", Journal of Chemical Physics '''22''' pp. 522- (1954)]</ref>.
The Mason-Rice rules for the [[Exp-6 potential]] UNIQ879f6b467d81d4c5-ref-000000AA-QINU.
==Srivastava and Srivastava rules==
==Srivastava and Srivastava rules==
The Srivastava and Srivastava rules for the [[Exp-6 potential]] <ref>[http://dx.doi.org/10.1063/1.1742786  B. N. Srivastava and K. P. Srivastava "Combination Rules for Potential Parameters of Unlike Molecules on Exp‐Six Model", Journal of Chemical Physics '''24''' pp. 1275-1276 (1956)]</ref>.
The Srivastava and Srivastava rules for the [[Exp-6 potential]] UNIQ879f6b467d81d4c5-ref-000000AB-QINU.
==Sikora rules==
==Sikora rules==
The Sikora rules for the [[Lennard-Jones model]] <ref>[http://dx.doi.org/10.1088/0022-3700/3/11/008 P. T. Sikora "Combining rules for spherically symmetric intermolecular potentials", Journal of Physics B: Atomic and Molecular Physics '''3''' pp. 1475- (1970)]</ref>.
The Sikora rules for the [[Lennard-Jones model]] UNIQ879f6b467d81d4c5-ref-000000AC-QINU.
==Tang and Toennies==
==Tang and Toennies==
<ref>[http://dx.doi.org/10.1007/BF01384663 K. T. Tang and J. Peter Toennies "New combining rules for well parameters and shapes of the van der Waals potential of mixed rare gas systems", Zeitschrift für Physik D Atoms, Molecules and Clusters '''1''' pp. 91-101 (1986)]</ref>
UNIQ879f6b467d81d4c5-ref-000000AD-QINU
==Waldman-Hagler rules==
==Waldman-Hagler rules==
The Waldman-Hagler rules <ref>[http://dx.doi.org/10.1002/jcc.540140909 M. Waldman and A. T. Hagler "New combining rules for rare-gas Van der-Waals parameters", Journal of Computational Chemistry '''14''' pp.  1077-1084 (1993)]</ref> are given by:
The Waldman-Hagler rules UNIQ879f6b467d81d4c5-ref-000000AE-QINU are given by:


:<math>r_{ij}^0 = \left( \frac{ (r_i^0)^6 + (r_j^0)^6 }{2} \right)^{1/6}</math>
:UNIQ879f6b467d81d4c5-math-000000AF-QINU


and
and


:<math>\epsilon_{ij} = 2 \sqrt{\epsilon_i \cdot \epsilon_j} \left( \frac{ (r_i^0)^3 \cdot  (r_j^0)^3 }{ (r_i^0)^6  + (r_j^0)^6 }  \right)</math>
:UNIQ879f6b467d81d4c5-math-000000B0-QINU


==References==
==References==
<references/>
UNIQ879f6b467d81d4c5-references-000000B1-QINU
'''Related reading'''
'''Related reading'''
*[http://dx.doi.org/10.1021/ja00046a032 Thomas A. Halgren "The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters", Journal of the American Chemical Society '''114''' pp. 7827-7843 (1992)]
*[http://dx.doi.org/10.1021/ja00046a032 Thomas A. Halgren "The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters", Journal of the American Chemical Society '''114''' pp. 7827-7843 (1992)]
[[category: mixtures]]
[[category: mixtures]]

Revision as of 22:28, 15 January 2015

The combining rules are geometric expressions designed to provide the interaction energy between two dissimilar non-bonded atoms (here labelled ?UNIQ879f6b467d81d4c5-math-0000008B-QINU? and ?UNIQ879f6b467d81d4c5-math-0000008C-QINU?). Most of the rules are designed to be used with a specific interaction potential in mind. (See also Mixing rules).

Böhm-Ahlrichs

?UNIQ879f6b467d81d4c5-ref-0000008D-QINU?

Diaz Peña-Pando-Renuncio

?UNIQ879f6b467d81d4c5-ref-0000008E-QINU? ?UNIQ879f6b467d81d4c5-ref-0000008F-QINU?

Fender-Halsey

The Fender-Halsey combining rule for the Lennard-Jones model is given by ?UNIQ879f6b467d81d4c5-ref-00000090-QINU?

?UNIQ879f6b467d81d4c5-math-00000091-QINU?

Gilbert-Smith

The Gilbert-Smith rules for the Born-Huggins-Meyer potential?UNIQ879f6b467d81d4c5-ref-00000092-QINU??UNIQ879f6b467d81d4c5-ref-00000093-QINU??UNIQ879f6b467d81d4c5-ref-00000094-QINU?.

Good-Hope rule

The Good-Hope rule for MieLennard‐Jones or Buckingham potentials ?UNIQ879f6b467d81d4c5-ref-00000095-QINU? is given by (Eq. 2):

?UNIQ879f6b467d81d4c5-math-00000096-QINU?

Hudson and McCoubrey

?UNIQ879f6b467d81d4c5-ref-00000097-QINU?

Hogervorst rules

The Hogervorst rules for the Exp-6 potential ?UNIQ879f6b467d81d4c5-ref-00000098-QINU?:

?UNIQ879f6b467d81d4c5-math-00000099-QINU?

and

?UNIQ879f6b467d81d4c5-math-0000009A-QINU?

Kong rules

The Kong rules for the Lennard-Jones model are given by (Table I in ?UNIQ879f6b467d81d4c5-ref-0000009B-QINU?):

?UNIQ879f6b467d81d4c5-math-0000009C-QINU?
?UNIQ879f6b467d81d4c5-math-0000009D-QINU?

Kong-Chakrabarty rules

The Kong-Chakrabarty rules for the Exp-6 potential ?UNIQ879f6b467d81d4c5-ref-0000009E-QINU? are given by (Eqs. 2-4):

?UNIQ879f6b467d81d4c5-math-0000009F-QINU?
?UNIQ879f6b467d81d4c5-math-000000A0-QINU?

and

?UNIQ879f6b467d81d4c5-math-000000A1-QINU?

Lorentz-Berthelot rules

The Lorentz rule is given by ?UNIQ879f6b467d81d4c5-ref-000000A2-QINU?

?UNIQ879f6b467d81d4c5-math-000000A3-QINU?

which is only really valid for the hard sphere model.

The Berthelot rule is given by ?UNIQ879f6b467d81d4c5-ref-000000A4-QINU?

?UNIQ879f6b467d81d4c5-math-000000A5-QINU?

These rules are simple and widely used, but are not without their failings ?UNIQ879f6b467d81d4c5-ref-000000A6-QINU? ?UNIQ879f6b467d81d4c5-ref-000000A7-QINU? ?UNIQ879f6b467d81d4c5-ref-000000A8-QINU? ?UNIQ879f6b467d81d4c5-ref-000000A9-QINU?.

Mason-Rice rules

The Mason-Rice rules for the Exp-6 potential ?UNIQ879f6b467d81d4c5-ref-000000AA-QINU?.

Srivastava and Srivastava rules

The Srivastava and Srivastava rules for the Exp-6 potential ?UNIQ879f6b467d81d4c5-ref-000000AB-QINU?.

Sikora rules

The Sikora rules for the Lennard-Jones model ?UNIQ879f6b467d81d4c5-ref-000000AC-QINU?.

Tang and Toennies

?UNIQ879f6b467d81d4c5-ref-000000AD-QINU?

Waldman-Hagler rules

The Waldman-Hagler rules ?UNIQ879f6b467d81d4c5-ref-000000AE-QINU? are given by:

?UNIQ879f6b467d81d4c5-math-000000AF-QINU?

and

?UNIQ879f6b467d81d4c5-math-000000B0-QINU?

References

?UNIQ879f6b467d81d4c5-references-000000B1-QINU? Related reading