Clausius equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Improved references.)
(Corrected T_c to be T_c^3 not T_c^2)
 
(One intermediate revision by the same user not shown)
Line 5: Line 5:
where <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]], <math> v </math> is the volume per mol,  and <math>R</math> is the [[molar gas constant]]. <math>T_c</math> is the [[critical points | critical]] temperature and <math>P_c</math> is the [[pressure]] at the critical point, and <math> v_c </math> is the critical volume per mol.
where <math>p</math> is the [[pressure]], <math>T</math> is the [[temperature]], <math> v </math> is the volume per mol,  and <math>R</math> is the [[molar gas constant]]. <math>T_c</math> is the [[critical points | critical]] temperature and <math>P_c</math> is the [[pressure]] at the critical point, and <math> v_c </math> is the critical volume per mol.


At the [[critical points | critical point]] one has <math>\left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 </math>, and <math>\left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 </math>, which leads to
At the [[critical points | critical point]] one has <math>\left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 </math>, and <math>\left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 </math>, which leads to <ref>For details see the [[Mathematica]] [http://urey.uoregon.edu/~pchemlab/CH417/Lect2009/Clausius%20equation%20of%20state%20to%20evaluate%20a%20b%20c.pdf printout] produced by [http://www.uoregon.edu/~chem/hardwick.html Dr. John L. Hardwick].</ref>


:<math>a =  \frac{27R^2T_c^2}{64P_c}</math>
:<math>a =  \frac{27R^2T_c^3}{64P_c}</math>


:<math>b= v_c - \frac{RT_c}{4P_c}</math>
:<math>b= v_c - \frac{RT_c}{4P_c}</math>
Line 13: Line 13:
and
and


:<math>c= \frac{3RT_c}{8P_c}-v_c</math>
:<math>c= \frac{3RT_c}{8P_c}-v_c</math>  
 
For details see the [[Mathematica]] [http://urey.uoregon.edu/~pchemlab/CH417/Lect2009/Clausius%20equation%20of%20state%20to%20evaluate%20a%20b%20c.pdf printout]
produced by [http://www.uoregon.edu/~chem/hardwick.html Dr. John L. Hardwick].
==References==
==References==
<references/>
<references/>
[[category: equations of state]]
[[category: equations of state]]

Latest revision as of 09:52, 7 September 2012

The Clausius equation of state, proposed in 1880 by Rudolf Julius Emanuel Clausius [1] [2] is given by (Eq. 1 [3])

where is the pressure, is the temperature, is the volume per mol, and is the molar gas constant. is the critical temperature and is the pressure at the critical point, and is the critical volume per mol.

At the critical point one has , and , which leads to [4]

and

References[edit]