Entropy

From SklogWiki
Revision as of 14:24, 11 April 2008 by Carl McBride (talk | contribs) (Added classical thermodynamics section)
Jump to navigation Jump to search
This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.
This SklogWiki entry needs to be rewritten at some point to improve coherence and readability.

Classical thermodynamics

In classical thermodynamics one has the entropy, S,

where is the heat and is the temperature.

Statistical mechanics

In statistical mechanics the entropy, S, is defined by

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} is the Boltzmann constant, m is the index for the microstates, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_m} is the probability that microstate m is occupied. In the microcanonical ensemble this gives:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.S\right. = k_B \ln \Omega}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} (sometimes written as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W} ) is the number of microscopic configurations that result in the observed macroscopic description of the thermodynamic system. This equation provides a link between classical thermodynamics and statistical mechanics

Arrow of time

Articles:

Books:

  • Steven F. Savitt (Ed.) "Time's Arrows Today: Recent Physical and Philosophical Work on the Direction of Time", Cambridge University Press (1997) ISBN 0521599458
  • Michael C. Mackey "Time's Arrow: The Origins of Thermodynamic Behavior" (1992) ISBN 0486432432
  • Huw Price "Time's Arrow and Archimedes' Point New Directions for the Physics of Time" Oxford University Press (1997) ISBN 978-0-19-511798-1

See also:

Interesting reading

References

  1. Ya. G. Sinai, "On the Concept of Entropy of a Dynamical System," Doklady Akademii Nauk SSSR 124 pp. 768-771 (1959)
  2. William G. Hoover "Entropy for Small Classical Crystals", Journal of Chemical Physics 49 pp. 1981-1982 (1968)

Classical thermodynamics