Potts model
The Potts model was proposed by Renfrey B. Potts in 1952 [1][2]. The Potts model is a generalisation of the Ising model to more than two components. For a general discussion on Potts models see Refs [3][4]. In practice one has a lattice system. The sites of the lattice can be occupied by particles of different species, .
The energy of the system, , is defined as:
where is the coupling constant, indicates that the sum is performed exclusively over pairs of nearest neighbour sites, and is the Kronecker delta. Note that the particular case is equivalent to the Ising model.
Phase transitions
Considering a symmetric situation (i.e. equal chemical potential for all the species):
- ;
the Potts model exhibits order-disorder phase transitions. For space dimensionality , and low values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q } the transitions are continuous (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E(T) } is a continuous function), but the heat capacity, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(T) = (\partial E/\partial T) } , diverges at the transition temperature. The critical behaviour of different values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q } belong to (or define) different universality classes of criticality For space dimensionality , the transitions for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q \ge 3 } are first order (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } shows a discontinuity at the transition temperature).
See also
References
- ↑ Renfrey B. Potts "Some generalized order-disorder transformations", Proceedings of the Cambridge Philosophical Society 48 pp. 106−109 (1952)
- ↑ Rodney J. Baxter "Exactly Solved Models in Statistical Mechanics", Academic Press (1982) ISBN 0120831821 Chapter 12 (freely available pdf)
- ↑ F. Y. Wu "The Potts model", Reviews of Modern Physics 54 pp. 235-268 (1982)
- ↑ F. Y. Wu "Erratum: The Potts model", Reviews of Modern Physics 55 p. 315 (1983)
Related reading