Bridgman thermodynamic formulas

From SklogWiki
Revision as of 11:02, 13 October 2011 by Carl McBride (talk | contribs) (→‎References: Added a related paper by Cooper and Russell)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Notation used (from Table I):

Bridgman thermodynamic formulas [1]

Table II

pressure

temperature

volume

entropy

heat

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_Q = - \left. \partial Q \right\vert_H = -VC_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_Q = - \left. \partial Q \right\vert_G = - \left( ST \left. \frac{\partial V}{\partial T} \right\vert_p -VC_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_Q = - \left. \partial Q \right\vert_A = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) + ST \left. \frac{\partial V}{\partial T} \right\vert_p}

work

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_W = - \left. \partial W \right\vert_U = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_W = - \left. \partial W \right\vert_H = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p - V \left. \frac{\partial V}{\partial T} \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_W = - \left. \partial W \right\vert_A = -pS \left. \frac{\partial V}{\partial p} \right\vert_T }

internal energy

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_U = - \left. \partial U \right\vert_H = -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right) - p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_U = - \left. \partial U \right\vert_G = -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right) +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_U = - \left. \partial U \right\vert_A = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }

enthalpy

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_H = - \left. \partial H \right\vert_G = -V(C_p+S) + TS \left. \frac{\partial V}{\partial T} \right\vert_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_H = - \left. \partial H \right\vert_A = -\left(S+p \left. \frac{\partial V}{\partial T} \right\vert_p \right) \left(V-T \left. \frac{\partial V}{\partial T} \right\vert_p \right) + p \left. \frac{\partial V}{\partial p} \right\vert_T }

Gibbs energy function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_G = - \left. \partial G \right\vert_A = -S\left(V+p \left. \frac{\partial V}{\partial p} \right\vert_T \right) - pV \left. \frac{\partial V}{\partial T} \right\vert_p }

See also

References

Related reading