Bridgman thermodynamic formulas
Notation used (from Table I):
- is the pressure.
- is the temperature (in Kelvin).
- is the volume.
- is the entropy.
- is the heat.
- is the work.
- is the internal energy.
- is the enthalpy
- is the Gibbs energy function
- is the Helmholtz energy function.
Bridgman thermodynamic formulas [1]
Table II
pressure
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_p = - \left. \partial p \right\vert_Q = C_p }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_p = - \left. \partial p \right\vert_W = p\left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_p = - \left. \partial p \right\vert_U = C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_p = - \left. \partial p \right\vert_H = C_p }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_p = - \left. \partial p \right\vert_A = -\left( S + p\left. \frac{\partial V}{\partial T} \right\vert_p \right)}
temperature
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial V \right\vert_T = - \left. \partial T \right\vert_V = - \left. \frac{\partial V}{\partial p} \right\vert_T}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial S \right\vert_T = - \left. \partial T \right\vert_S = \left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_T = - \left. \partial T \right\vert_Q = T\left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_T = - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_T}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_T = - \left. \partial T \right\vert_U = T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_T = - \left. \partial T \right\vert_H = -V + T\left. \frac{\partial V}{\partial T} \right\vert_p }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_T = - \left. \partial T \right\vert_G = -V }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_T = - \left. \partial T \right\vert_A = p\left. \frac{\partial V}{\partial p} \right\vert_T}
volume
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial S \right\vert_V = - \left. \partial V \right\vert_S = 1/T \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_V = - \left. \partial V \right\vert_Q = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_V = - \left. \partial V \right\vert_W = 0 }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_V = - \left. \partial V \right\vert_U = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_V = - \left. \partial V \right\vert_H = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p - V\left. \frac{\partial V}{\partial T} \right\vert_p }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_V = - \left. \partial V \right\vert_G = - \left( V \left. \frac{\partial V}{\partial T} \right\vert_p + S\left. \frac{\partial V}{\partial p} \right\vert_T \right) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_V = - \left. \partial V \right\vert_A = -S\left. \frac{\partial V}{\partial p} \right\vert_T }