Critical exponents: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added some values for alpha etc.)
m (→‎Correlation length: Inseted leading zero)
Line 29: Line 29:
:<math>\left. \xi \right.= \xi_0 \epsilon^{-\nu}</math>
:<math>\left. \xi \right.= \xi_0 \epsilon^{-\nu}</math>


Theoretically one has <math>\nu = 0.63012(16)</math><ref name="Campostrini2002"> </ref>  for the three dimensional Ising model,  and <math>\nu = .671 55(27)</math><ref name="Campostrini2001"> </ref>  for the three-dimensional XY universality class.
Theoretically one has <math>\nu = 0.63012(16)</math><ref name="Campostrini2002"> </ref>  for the three dimensional Ising model,  and <math>\nu = 0.67155(27)</math><ref name="Campostrini2001"> </ref>  for the three-dimensional XY universality class.
 
==Rushbrooke equality==
==Rushbrooke equality==
The Rushbrooke equality <ref>[http://dx.doi.org/10.1063/1.1734338 G. S. Rushbrooke "On the Thermodynamics of the Critical Region for the Ising Problem", Journal of Chemical Physics  39, 842-843 (1963)]</ref> , proposed by Essam and Fisher (Eq. 38 <ref>[http://dx.doi.org/10.1063/1.1733766 John W. Essam and Michael E. Fisher "Padé Approximant Studies of the Lattice Gas and Ising Ferromagnet below the Critical Point", Journal of Chemical Physics  38, 802-812 (1963)]</ref>) is given by
The Rushbrooke equality <ref>[http://dx.doi.org/10.1063/1.1734338 G. S. Rushbrooke "On the Thermodynamics of the Critical Region for the Ising Problem", Journal of Chemical Physics  39, 842-843 (1963)]</ref> , proposed by Essam and Fisher (Eq. 38 <ref>[http://dx.doi.org/10.1063/1.1733766 John W. Essam and Michael E. Fisher "Padé Approximant Studies of the Lattice Gas and Ising Ferromagnet below the Critical Point", Journal of Chemical Physics  38, 802-812 (1963)]</ref>) is given by

Revision as of 13:04, 26 November 2009

Reduced distance:

is the reduced distance from the critical temperature, i.e.

Note that this implies a certain symmetry when the critical point is approached from either 'above' or 'below', which is not necessarily the case.

Heat capacity exponent:

The isochoric heat capacity is given by

Theoretically one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = 0.1096(5)} [1] for the three dimensional Ising model, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = -0.0146(8)} [2] for the three-dimensional XY universality class. Experimentally Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = 0.1105^{+0.025}_{-0.027}} [3].

Magnetic order parameter exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta}

The magnetic order parameter, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is given by

Theoretically one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta =0.32653(10)} [1] for the three dimensional Ising model, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta = 0.3485(2)} [2] for the three-dimensional XY universality class.

Susceptibility exponent: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma}

Susceptibility

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \chi \right. = \chi_0 \epsilon^{-\gamma}}

Theoretically one has [1] for the three dimensional Ising model, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma = 1.3177(5)} [2] for the three-dimensional XY universality class.

Correlation length

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \xi \right.= \xi_0 \epsilon^{-\nu}}

Theoretically one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu = 0.63012(16)} [1] for the three dimensional Ising model, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu = 0.67155(27)} [2] for the three-dimensional XY universality class.

Rushbrooke equality

The Rushbrooke equality [4] , proposed by Essam and Fisher (Eq. 38 [5]) is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha + 2\beta + \gamma =2} .

Using the above-mentioned values one has:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.1096 + (2\times0.32653) + 1.2373 = 1.99996}

Gamma divergence

When approaching the critical point along the critical isochore (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T > T_c} ) the divergence is of the form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \right. C_p \sim \kappa_T \sim (T-T_c)^{-\gamma} \sim (p-p_c)^{-\gamma}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} is 1.0 for the Van der Waals equation of state, and is usually 1.2 to 1.3.

Epsilon divergence

When approaching the critical point along the critical isotherm the divergence is of the form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \right. \kappa_T \sim (p-p_c)^{-\epsilon}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} is 2/3 for the Van der Waals equation of state, and is usually 0.75 to 0.8.

See also

References