Van der Waals equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(small changes for consistency)
m (Slight tidy.)
Line 12: Line 12:
* <math> T </math> is the absolute [[temperature]],
* <math> T </math> is the absolute [[temperature]],
* <math> R  </math> is the [[molar gas constant]]; <math> R = N_A k_B </math>, with <math> N_A </math> being the [[Avogadro constant]] and <math>k_B</math> being the [[Boltzmann constant]].
* <math> R  </math> is the [[molar gas constant]]; <math> R = N_A k_B </math>, with <math> N_A </math> being the [[Avogadro constant]] and <math>k_B</math> being the [[Boltzmann constant]].
==Critical point==
At the  [[Critical points |critical point]]  one has <math>\left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 </math>, and <math>\left.\frac{\partial^2 p}{\partial v^2}\right|_{T=T_c}=0 </math>, leading to


:<math>a= \frac{27}{64}\frac{R^2T_c^2}{P_c}</math>
:<math>T_c= \frac{8a}{27bR}</math>


:<math>b= \frac{RT_c}{8P_c}</math>
==Critical point==
The [[Critical points |critical point]] for the van der Waals equation of state can be found at
:<math>T_c= \frac{8a}{27bR}</math>


:<math>p_c=\frac{a}{27b^2}</math>
:<math>p_c=\frac{a}{27b^2}</math>
and at
 
 
:<math>\left.V_c\right.=3b</math>.
:<math>\left.V_c\right.=3b</math>.
and
:<math>\frac{p_cV_c}{T_c}= \frac{3R}{8}</math>
which then leads to
:<math>a= \frac{27}{64}\frac{R^2T_c^2}{P_c}</math>
:<math>b= \frac{RT_c}{8P_c}</math>
==Dimensionless formulation==
==Dimensionless formulation==
If one takes the following reduced quantities  
If one takes the following reduced quantities  

Revision as of 13:00, 20 October 2009

The van der Waals equation of state, developed by Johannes Diderik van der Waals, takes into account two features that are absent in the ideal gas equation of state; the parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b } introduces somehow the repulsive behavior between pairs of molecules at short distances, it represents the minimum molar volume of the system, whereas Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a } measures the attractive interactions between the molecules. The van der Waals equation of state leads to a liquid-vapor equilibrium at low temperatures, with the corresponding critical point.

Equation of state

The van der Waals equation of state can be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p = \frac{ n R T}{V - n b } - a \left( \frac{ n}{V} \right)^2 \right. } .

where:

  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is the pressure,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } is the volume,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n } is the number of moles,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the absolute temperature,
  • Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R } is the molar gas constant; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R = N_A k_B } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_A } being the Avogadro constant and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} being the Boltzmann constant.

Critical point

At the critical point one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.\frac{\partial p}{\partial v}\right|_{T=T_c}=0 } , and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \left.{\frac {\partial ^{2}p}{\partial v^{2}}}\right|_{T=T_{c}}=0} , leading to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c= \frac{8a}{27bR}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_c=\frac{a}{27b^2}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.V_c\right.=3b} .


and


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{p_cV_c}{T_c}= \frac{3R}{8}}


which then leads to


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a= \frac{27}{64}\frac{R^2T_c^2}{P_c}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b= \frac{RT_c}{8P_c}}

Dimensionless formulation

If one takes the following reduced quantities

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{p} = \frac{p}{p_c};~ \tilde{V} = \frac{V}{V_c}; ~\tilde{t} = \frac{T}{T_c};}

one arrives at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{p} = \frac{8\tilde{t}}{3\tilde{V} -1} -\frac{3}{\tilde{V}^2}}

The following image is a plot of the isotherms Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T/T_c} = 0.85, 0.90, 0.95, 1.0 and 1.05 (from bottom to top) for the van der Waals equation of state:

Plot of the isotherms T/T_c = 0.85, 0.90, 0.95, 1.0 and 1.05 for the van der Waals equation of state
Plot of the isotherms T/T_c = 0.85, 0.90, 0.95, 1.0 and 1.05 for the van der Waals equation of state

Maxwell's equal area construction

Interesting reading

References

  • J. D. van der Waals "Over de Continuiteit van den Gas- en Vloeistoftoestand", doctoral thesis, Leiden, A,W, Sijthoff (1873).

English translation: