Equations of state for hard sphere mixtures: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Slight change to introduction.)
m (Slight change to introduction (again).)
Line 1: Line 1:
The following are [[equations of state]] for [[hard-sphere mixtures]].
The following are [[equations of state]] for [[mixtures]] of [[hard sphere model | hard spheres]].
==Mansoori,  Carnahan, Starling, and Leland==
==Mansoori,  Carnahan, Starling, and Leland==
The Mansoori,  Carnahan, Starling, and Leland  equation of state is given by (Ref. 1 Eq. 7):
The Mansoori,  Carnahan, Starling, and Leland  equation of state is given by (Ref. 1 Eq. 7):

Revision as of 14:52, 27 November 2008

The following are equations of state for mixtures of hard spheres.

Mansoori, Carnahan, Starling, and Leland

The Mansoori, Carnahan, Starling, and Leland equation of state is given by (Ref. 1 Eq. 7):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{(1+\xi + \xi^2)- 3\xi(y_1 + y_2 \xi) -\xi^3y_3 }{(1-\xi)^{-3}}}

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi = \sum_{i=1}^m \frac{\pi}{6} \rho \sigma_i^3 x_i}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is the number of components, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i} is the diameter of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} th component, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_i} is the mole fraction, such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^m x_i =1} .

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_1 = \sum_{j>i=1}^m \Delta_{ij} \frac{\sigma_i + \sigma_j}{\sqrt{\sigma_i \sigma_j}} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_2 = \sum_{j>i=1}^m \Delta_{ij} \sum_{k=1}^m \left(\frac{\xi_k}{\xi} \right) \frac{\sqrt{\sigma_i \sigma_j}}{\sigma_k} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_3 = \left[ \sum_{i=1}^m \left(\frac{\xi_i}{\xi} \right)^{2/3} x_i^{1/3} \right]^3 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{ij} = \frac{\sqrt{\xi_i \xi_j}}{\xi} \frac{(\sigma_i - \sigma_j)^2}{\sigma_i \sigma_j} \sqrt{x_i x_j}}

Santos, Yuste and López De Haro

Ref. 2

Hansen-Goos and Roth

Ref. 3 Based on the Carnahan-Starling equation of state

References

  1. G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr. "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres", Journal of Chemical Physics 54 pp. 1523-1525 (1971)
  2. Andrés Santos; Santos Bravo Yuste; Mariano López De Haro "Equation of state of a multicomponent d-dimensional hard-sphere fluid", Molecular Physics 96 pp. 1-5 (1999)
  3. Hendrik Hansen-Goos and Roland Roth "A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres", Journal of Chemical Physics 124 154506 (2006)