Equations of state for hard sphere mixtures: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
Carl McBride (talk | contribs) (→Mansoori, Carnahan, Starling, and Leland: Added eos.) |
||
Line 1: | Line 1: | ||
Mixtures of [[hard sphere model | hard spheres]]. | Mixtures of [[hard sphere model | hard spheres]]. | ||
==Mansoori, Carnahan, Starling, and Leland== | ==Mansoori, Carnahan, Starling, and Leland== | ||
Ref. 1 | The Mansoori, Carnahan, Starling, and Leland equation of state is given by (Ref. 1 Eq. 7): | ||
:<math>Z = \frac{(1+\xi + \xi^2)- 3\xi(y_1 + y_2 \xi) -\xi^3y_3 }{(1-\xi)^{-3}}</math> | |||
where | |||
:<math>\xi = \sum_{i=1}^m \frac{\pi}{6} \rho \sigma_i^3 x_i</math> | |||
where <math>m</math> is the number of components, <math>\sigma_i</math> is the diameter of the <math>i</math>th component, and <math>x_i</math> is the mole fraction, such that <math>\sum_{i=1}^m x_i =1</math>. | |||
:<math>y_1 = \sum_{j>i=1}^m \Delta_{ij} \frac{\sigma_i + \sigma_j}{\sqrt{\sigma_i \sigma_j}} </math> | |||
:<math>y_2 = \sum_{j>i=1}^m \Delta_{ij} \sum_{k=1}^m \left(\frac{\xi_k}{\xi} \right) \frac{\sqrt{\sigma_i \sigma_j}}{\sigma_k} </math> | |||
:<math>y_3 = \left[ \sum_{i=1}^m \left(\frac{\xi_i}{\xi} \right)^{2/3} x_i^{1/3} \right]^3 </math> | |||
:<math>\Delta_{ij} = \frac{\sqrt{\xi_i \xi_j}}{\xi} \frac{(\sigma_i - \sigma_j)^2}{\sigma_i \sigma_j} \sqrt{x_i x_j}</math> | |||
== Santos, Yuste and López De Haro== | == Santos, Yuste and López De Haro== | ||
Ref. 2 | Ref. 2 |
Revision as of 15:49, 22 April 2008
Mixtures of hard spheres.
Mansoori, Carnahan, Starling, and Leland
The Mansoori, Carnahan, Starling, and Leland equation of state is given by (Ref. 1 Eq. 7):
where
where is the number of components, is the diameter of the th component, and is the mole fraction, such that .
Santos, Yuste and López De Haro
Ref. 2
Hansen-Goos and Roth
Ref. 3 Based on the Carnahan-Starling equation of state
References
- G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr. "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres", Journal of Chemical Physics 54 pp. 1523-1525 (1971)
- Andrés Santos; Santos Bravo Yuste; Mariano López De Haro "Equation of state of a multicomponent d-dimensional hard-sphere fluid", Molecular Physics 96 pp. 1-5 (1999)
- Hendrik Hansen-Goos and Roland Roth "A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres", Journal of Chemical Physics 124 154506 (2006)