Van der Waals equation of state: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 29: Line 29:
and at
and at
:<math>\left.v_c\right.=3b</math>.
:<math>\left.v_c\right.=3b</math>.
==Dimensionless formulation==
If one takes the following quantities
:<math>\tilde{p} = \frac{p}{p_c};~ \tilde{v} = \frac{v}{v_c}; ~\tilde{t} = \frac{T}{T_c};</math>
one arrives at
:<math>\tilde{p} = \frac{8\tilde{t}}{3\tilde{v} -1} -\frac{3}{\tilde{v}^2}</math>
[[Image:vdW_isotherms.png|center|Plot of the isotherms T/T_c = 0.85, 0.90, 0.95, 1.0 and 1.05 for the Van der Waals equation of state]]
==Interesting reading==
==Interesting reading==
*[http://store.doverpublications.com/0486495930.html J. D. van der Waals "On the Continuity of the Gaseous and Liquid States", Dover Publications ISBN: 0486495930]
*[http://store.doverpublications.com/0486495930.html J. D. van der Waals "On the Continuity of the Gaseous and Liquid States", Dover Publications ISBN: 0486495930]

Revision as of 14:19, 24 September 2007

The van der Waals equation of state, developed by Johannes Diderik van der Waals, can be written as

.

where:

  • is the pressure
  • is the volume
  • is the number of moles
  • is the absolute temperature
  • is the Gas constant; , with being Avogadro constant

The van der Waals equation of state takes into account two features that are absent in the ideal Gas equation of state: The parameter introduces somehow the repulsive behavior between pairs of molecules at short distances, it represents the minimum molar volume of the system, whereas measures the attractive interactions between the molecules. The van der Waals equation of state leads to a liquid-vapor equilibrium at low temperatures, with the corresponding critical point.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a= \frac{27}{64}\frac{R^2T_c^2}{P_c}}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b= \frac{RT_c}{8P_c}}

Critical point

The critical point for the van der Waals equation of state can be found at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c= \frac{8a}{27bR}} ,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_c=\frac{a}{27b^2}}

and at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.v_c\right.=3b} .

Dimensionless formulation

If one takes the following quantities

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{p} = \frac{p}{p_c};~ \tilde{v} = \frac{v}{v_c}; ~\tilde{t} = \frac{T}{T_c};}

one arrives at

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{p} = \frac{8\tilde{t}}{3\tilde{v} -1} -\frac{3}{\tilde{v}^2}}
Plot of the isotherms T/T_c = 0.85, 0.90, 0.95, 1.0 and 1.05 for the Van der Waals equation of state
Plot of the isotherms T/T_c = 0.85, 0.90, 0.95, 1.0 and 1.05 for the Van der Waals equation of state

Interesting reading

References