Chemical potential: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) No edit summary |
mNo edit summary |
||
Line 26: | Line 26: | ||
==References== | ==References== | ||
#[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)] | #[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)] | ||
[[category:classical thermodynamics]] | |||
[[category:statistical mechanics]] |
Revision as of 17:02, 25 May 2007
Classical thermodynamics
Definition:
where is the Gibbs energy function, leading to
where is the Helmholtz energy function, is the Boltzmann constant, is the pressure, is the temperature and is the volume.
Statistical mechanics
The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles
where is the partition function for a fluid of identical particles
and is the configurational integral