Bridgman thermodynamic formulas: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
Line 105: Line 105:
====internal energy====
====internal energy====


:<math> \left. \partial H \right\vert_Q =  - \left. \partial Q \right\vert_H =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  -  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right) </math>
:<math> \left. \partial H \right\vert_U =  - \left. \partial U \right\vert_H =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  -  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p  \right) </math>


:<math> \left. \partial G \right\vert_Q =  - \left. \partial Q \right\vert_G =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p +  p\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math>
:<math> \left. \partial G \right\vert_U =  - \left. \partial U \right\vert_G =  -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right)  +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p +  p\left. \frac{\partial V}{\partial p} \right\vert_T \right) </math>


:<math> \left. \partial A \right\vert_Q =  - \left. \partial Q \right\vert_A =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math>
:<math> \left. \partial A \right\vert_U =  - \left. \partial U \right\vert_A =  p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T +  T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) </math>
 
====enthalpy====
 
:<math> \left. \partial G \right\vert_H  =  - \left. \partial H \right\vert_G =  -V(C_p+S) + TS \left. \frac{\partial V}{\partial T} \right\vert_p  </math>
 
:<math> \left. \partial A \right\vert_H  =  - \left. \partial H \right\vert_A = -\left(S+p  \left. \frac{\partial V}{\partial T} \right\vert_p \right) \left(V-T  \left. \frac{\partial V}{\partial T} \right\vert_p \right) + p \left. \frac{\partial V}{\partial p} \right\vert_T  </math>


====Gibbs energy function====
====Gibbs energy function====
:<math> \left. \partial A \right\vert_G  =  - \left. \partial G \right\vert_A = -S\left(V+p  \left. \frac{\partial V}{\partial p} \right\vert_T \right)  - pV \left. \frac{\partial V}{\partial T} \right\vert_p  </math>


==See also==
==See also==

Revision as of 13:12, 6 October 2011

Notation used (from Table I):

Bridgman thermodynamic formulas [1]

Table II

pressure

temperature

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial V \right\vert_T = - \left. \partial T \right\vert_V = - \left. \frac{\partial V}{\partial p} \right\vert_T}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial S \right\vert_T = - \left. \partial T \right\vert_S = \left. \frac{\partial V}{\partial T} \right\vert_p}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_T = - \left. \partial T \right\vert_Q = T\left. \frac{\partial V}{\partial T} \right\vert_p}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_T = - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_T}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_T = - \left. \partial T \right\vert_U = T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_T = - \left. \partial T \right\vert_H = -V + T\left. \frac{\partial V}{\partial T} \right\vert_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_T = - \left. \partial T \right\vert_G = -V }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_T = - \left. \partial T \right\vert_A = p\left. \frac{\partial V}{\partial p} \right\vert_T}

volume

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial S \right\vert_V = - \left. \partial V \right\vert_S = 1/T \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_V = - \left. \partial V \right\vert_Q = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_V = - \left. \partial V \right\vert_W = 0 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_V = - \left. \partial V \right\vert_U = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_V = - \left. \partial V \right\vert_H = C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p - V\left. \frac{\partial V}{\partial T} \right\vert_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_V = - \left. \partial V \right\vert_G = - \left( V \left. \frac{\partial V}{\partial T} \right\vert_p + S\left. \frac{\partial V}{\partial p} \right\vert_T \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_V = - \left. \partial V \right\vert_A = -S\left. \frac{\partial V}{\partial p} \right\vert_T }

entropy

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_S = - \left. \partial S \right\vert_Q = 0 }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_S = - \left. \partial S \right\vert_W = -(p/T) \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_S = - \left. \partial S \right\vert_U = (p/T) \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_S = - \left. \partial S \right\vert_H = -VC_p/T }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_S = - \left. \partial S \right\vert_G = -(1/T) \left( VC_p -ST\left. \frac{\partial V}{\partial T} \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_S = - \left. \partial S \right\vert_A = (1/T) \left( p\left( C_p \left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) + ST\left. \frac{\partial V}{\partial T} \right\vert_p \right) }

heat

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_Q = - \left. \partial Q \right\vert_W = -p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_Q = - \left. \partial Q \right\vert_U = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_Q = - \left. \partial Q \right\vert_H = -VC_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_Q = - \left. \partial Q \right\vert_G = - \left( ST \left. \frac{\partial V}{\partial T} \right\vert_p -VC_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_Q = - \left. \partial Q \right\vert_A = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) + ST \left. \frac{\partial V}{\partial T} \right\vert_p}

work

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_W = - \left. \partial W \right\vert_U = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_W = - \left. \partial W \right\vert_H = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p - V \left. \frac{\partial V}{\partial T} \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_W = - \left. \partial W \right\vert_G = -p \left( V\left. \frac{\partial V}{\partial p} \right\vert_T + S \left. \frac{\partial V}{\partial p} \right\vert_T \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_W = - \left. \partial W \right\vert_A = -pS \left. \frac{\partial V}{\partial p} \right\vert_T }

internal energy

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_U = - \left. \partial U \right\vert_H = -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right) - p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_U = - \left. \partial U \right\vert_G = -V \left( C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p \right) +S \left( T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T \right) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_U = - \left. \partial U \right\vert_A = p \left( C_p\left. \frac{\partial V}{\partial p} \right\vert_T + T\left. \left( \frac{\partial V}{\partial T} \right)^2 \right\vert_p \right) }

enthalpy

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_H = - \left. \partial H \right\vert_G = -V(C_p+S) + TS \left. \frac{\partial V}{\partial T} \right\vert_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_H = - \left. \partial H \right\vert_A = -\left(S+p \left. \frac{\partial V}{\partial T} \right\vert_p \right) \left(V-T \left. \frac{\partial V}{\partial T} \right\vert_p \right) + p \left. \frac{\partial V}{\partial p} \right\vert_T }

Gibbs energy function

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_G = - \left. \partial G \right\vert_A = -S\left(V+p \left. \frac{\partial V}{\partial p} \right\vert_T \right) - pV \left. \frac{\partial V}{\partial T} \right\vert_p }

See also

References