Bridgman thermodynamic formulas: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (→‎Table II: tmp save)
Line 41: Line 41:
:<math> \left. \partial Q \right\vert_T  =  - \left. \partial T \right\vert_Q =  T\left. \frac{\partial V}{\partial T} \right\vert_p</math>
:<math> \left. \partial Q \right\vert_T  =  - \left. \partial T \right\vert_Q =  T\left. \frac{\partial V}{\partial T} \right\vert_p</math>


:<math> \left. \partial W \right\vert_T  =  - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_p</math>
:<math> \left. \partial W \right\vert_T  =  - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_T</math>
 
:<math> \left. \partial U \right\vert_T  =  - \left. \partial T \right\vert_U = T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T</math>
 
:<math> \left. \partial H \right\vert_T  =  - \left. \partial T \right\vert_H = -V + T\left. \frac{\partial V}{\partial T} \right\vert_p  </math>
 
:<math> \left. \partial G \right\vert_T  =  - \left. \partial T \right\vert_G = -V </math>
 
:<math> \left. \partial A \right\vert_T  =  - \left. \partial T \right\vert_A =  p\left. \frac{\partial V}{\partial p} \right\vert_T</math>
 
====volume====


==See also==
==See also==

Revision as of 11:33, 6 October 2011

Notation used (from Table I):

Bridgman thermodynamic formulas [1]

Table II

pressure

temperature

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial V \right\vert_T = - \left. \partial T \right\vert_V = - \left. \frac{\partial V}{\partial p} \right\vert_T}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial S \right\vert_T = - \left. \partial T \right\vert_S = \left. \frac{\partial V}{\partial T} \right\vert_p}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_T = - \left. \partial T \right\vert_Q = T\left. \frac{\partial V}{\partial T} \right\vert_p}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_T = - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_T}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_T = - \left. \partial T \right\vert_U = T\left. \frac{\partial V}{\partial T} \right\vert_p + p\left. \frac{\partial V}{\partial p} \right\vert_T}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_T = - \left. \partial T \right\vert_H = -V + T\left. \frac{\partial V}{\partial T} \right\vert_p }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_T = - \left. \partial T \right\vert_G = -V }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_T = - \left. \partial T \right\vert_A = p\left. \frac{\partial V}{\partial p} \right\vert_T}

volume

See also

References