Bridgman thermodynamic formulas: Difference between revisions
Jump to navigation
Jump to search
Carl McBride (talk | contribs) m (→pressure) |
Carl McBride (talk | contribs) m (→Table II) |
||
| Line 34: | Line 34: | ||
====temperature==== | ====temperature==== | ||
:<math> \left. \partial V \right\vert_T = - \left. \partial T \right\vert_V = - \left. \frac{\partial V}{\partial p} \right\vert_T</math> | |||
:<math> \left. \partial S \right\vert_T = - \left. \partial T \right\vert_S = \left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
:<math> \left. \partial Q \right\vert_T = - \left. \partial T \right\vert_Q = T\left. \frac{\partial V}{\partial T} \right\vert_p</math> | |||
:<math> \left. \partial W \right\vert_T = - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_p</math> | |||
==See also== | ==See also== | ||
Revision as of 15:48, 5 October 2011
Notation used (from Table I):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the pressure.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature (in Kelvin).
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} is the entropy.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q} is the heat.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W} is the work.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} is the internal energy.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} is the enthalpy
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} is the Gibbs energy function
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is the Helmholtz energy function.
Bridgman thermodynamic formulas [1]
Table II
pressure
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial V \right\vert_p = - \left. \partial p \right\vert_V = \left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial S \right\vert_p = - \left. \partial p \right\vert_S = C_p/T }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_p = - \left. \partial p \right\vert_Q = C_p }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_p = - \left. \partial p \right\vert_W = p\left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial U \right\vert_p = - \left. \partial p \right\vert_U = C_p - p\left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial H \right\vert_p = - \left. \partial p \right\vert_H = C_p }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial G \right\vert_p = - \left. \partial p \right\vert_G = -S }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial A \right\vert_p = - \left. \partial p \right\vert_A = -\left( S + p\left. \frac{\partial V}{\partial T} \right\vert_p \right)}
temperature
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial V \right\vert_T = - \left. \partial T \right\vert_V = - \left. \frac{\partial V}{\partial p} \right\vert_T}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial S \right\vert_T = - \left. \partial T \right\vert_S = \left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial Q \right\vert_T = - \left. \partial T \right\vert_Q = T\left. \frac{\partial V}{\partial T} \right\vert_p}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \partial W \right\vert_T = - \left. \partial T \right\vert_W = - p\left. \frac{\partial V}{\partial p} \right\vert_p}