Grand canonical ensemble: Difference between revisions
Carl McBride (talk | contribs) m (Slight tidy.) |
Carl McBride (talk | contribs) m (→Grand canonical partition function: added an internal link to inverse temperature) |
||
| Line 18: | Line 18: | ||
* <math>N</math> is the number of particles | * <math>N</math> is the number of particles | ||
* <math> \left. \Lambda \right. </math> is the [[de Broglie thermal wavelength]] (which depends on the temperature) | * <math> \left. \Lambda \right. </math> is the [[de Broglie thermal wavelength]] (which depends on the temperature) | ||
* <math> \beta | * <math> \beta </math> is the [[inverse temperature]] | ||
* <math>U</math> is the potential energy, which depends on the coordinates of the particles (and on the [[models | interaction model]]) | * <math>U</math> is the potential energy, which depends on the coordinates of the particles (and on the [[models | interaction model]]) | ||
* <math> \left( R^*\right)^{3N} </math> represent the <math>3N</math> position coordinates of the particles (reduced with the system size): i.e. <math> \int d (R^*)^{3N} = 1 </math> | * <math> \left( R^*\right)^{3N} </math> represent the <math>3N</math> position coordinates of the particles (reduced with the system size): i.e. <math> \int d (R^*)^{3N} = 1 </math> | ||
Revision as of 11:53, 31 August 2011
The grand-canonical ensemble is for "open" systems, where the number of particles, , can change. It can be viewed as an ensemble of canonical ensembles; there being a canonical ensemble for each value of , and the (weighted) sum over of these canonical ensembles constitutes the grand canonical ensemble. The weighting factor is Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \exp \left[\beta \mu \right]} and is known as the fugacity. The grand-canonical ensemble is particularly well suited to simulation studies of adsorption.
Ensemble variables
- chemical potential,
- volume,
- temperature,
Grand canonical partition function
The grand canonical partition function for a one-component system in a three-dimensional space is given by:
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Xi _{\mu VT}=\sum _{N=0}^{\infty }\exp \left[\beta \mu N\right]Q_{NVT}}
i.e. for a classical system one has
- Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \Xi _{\mu VT}=\sum _{N=0}^{\infty }\exp \left[\beta \mu N\right]{\frac {V^{N}}{N!\Lambda ^{3N}}}\int d(R^{*})^{3N}\exp \left[-\beta U\left(V,(R^{*})^{3N}\right)\right]}
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} is the number of particles
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Lambda \right. } is the de Broglie thermal wavelength (which depends on the temperature)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta } is the inverse temperature
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U} is the potential energy, which depends on the coordinates of the particles (and on the interaction model)
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( R^*\right)^{3N} } represent the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3N} position coordinates of the particles (reduced with the system size): i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int d (R^*)^{3N} = 1 }
Helmholtz energy and partition function
The corresponding thermodynamic potential, the grand potential, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} , for the aforementioned grand canonical partition function is:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega = \left. A - \mu N \right. } ,
where A is the Helmholtz energy function. Using the relation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left.U\right.=TS -pV + \mu N}
one arrives at
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \Omega \right.= -pV}
i.e.:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. p V = k_B T \ln \Xi_{\mu V T } \right. }
See also
References
- Related reading