Critical exponents: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
Line 61: Line 61:
When approaching the critical point along the critical isochore (<math>T > T_c</math>) the divergence is of the form
When approaching the critical point along the critical isochore (<math>T > T_c</math>) the divergence is of the form


:<math>\left. \right. C_p \sim \kappa_T \sim (T-T_c)^{-\gamma} \sim (p-p_c)^{-\gamma}</math>
:<math>\left. \right. \kappa_T \sim (T-T_c)^{-\gamma} \sim (p-p_c)^{-\gamma}</math>


where <math>\gamma</math> is 1.0 for the [[Van der Waals equation of state]], and is usually 1.2 to 1.3.
where <math>\kappa_T</math> is the [[Compressibility#Isothermal compressibility | isothermal compressibility]]. <math>\gamma</math> is 1.0 for the [[Van der Waals equation of state]], and is usually 1.2 to 1.3.


==Epsilon divergence==
==Epsilon divergence==

Revision as of 16:32, 15 July 2011

Reduced distance:

is the reduced distance from the critical temperature, i.e.

Note that this implies a certain symmetry when the critical point is approached from either 'above' or 'below', which is not necessarily the case.

Heat capacity exponent:

The isochoric heat capacity is given by

Theoretically one has [1] for the three dimensional Ising model, and [2] for the three-dimensional XY universality class. Experimentally Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \alpha =0.1105_{-0.027}^{+0.025}} [3].

Magnetic order parameter exponent:

The magnetic order parameter, is given by

Theoretically one has [1] for the three dimensional Ising model, and [2] for the three-dimensional XY universality class.

Susceptibility exponent:

Susceptibility

Theoretically one has [1] for the three dimensional Ising model, and Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \gamma =1.3177(5)} [2] for the three-dimensional XY universality class.

Correlation length

Theoretically one has Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu = 0.63012(16)} [1] for the three dimensional Ising model, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu = 0.67155(27)} [2] for the three-dimensional XY universality class.

Inequalities

Fisher inequality

The Fisher inequality (Eq. 5 [4])

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma \le (2-\eta) \nu}

Griffiths inequality

The Griffiths inequality (Eq. 3 [5]):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1+\delta)\beta \ge 2-\alpha'}

Josephson inequality

The Josephson inequality [6][7][8]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\nu \ge 2-\alpha}

Liberman inequality

[9]

Rushbrooke inequality

The Rushbrooke inequality (Eq. 2 [10]), based on the work of Essam and Fisher (Eq. 38 [11]) is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha' + 2\beta + \gamma' \ge 2} .

Using the above-mentioned values[1] one has:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.1096 + (2\times0.32653) + 1.2373 = 1.99996}

Widom inequality

The Widom inequality [12]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma' \ge \beta(\delta -1)}

Hyperscaling

Gamma divergence

When approaching the critical point along the critical isochore (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T > T_c} ) the divergence is of the form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \right. \kappa_T \sim (T-T_c)^{-\gamma} \sim (p-p_c)^{-\gamma}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \kappa_T} is the isothermal compressibility. is 1.0 for the Van der Waals equation of state, and is usually 1.2 to 1.3.

Epsilon divergence

When approaching the critical point along the critical isotherm the divergence is of the form

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left. \right. \kappa_T \sim (p-p_c)^{-\epsilon}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} is 2/3 for the Van der Waals equation of state, and is usually 0.75 to 0.8.

See also

References

  1. 1.0 1.1 1.2 1.3 1.4 Massimo Campostrini, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice", Physical Review E 65 066127 (2002)
  2. 2.0 2.1 2.2 2.3 Massimo Campostrini, Martin Hasenbusch, Andrea Pelissetto, Paolo Rossi, and Ettore Vicari "Critical behavior of the three-dimensional XY universality class" Physical Review B 63 214503 (2001)
  3. A. Haupt and J. Straub "Evaluation of the isochoric heat capacity measurements at the critical isochore of SF6 performed during the German Spacelab Mission D-2", Physical Review E 59 pp. 1795-1802 (1999)
  4. Michael E. Fisher "Rigorous Inequalities for Critical-Point Correlation Exponents", Physical Review 180 pp. 594-600 (1969)
  5. Robert B. Griffiths "Thermodynamic Inequality Near the Critical Point for Ferromagnets and Fluids", Physical Review Letters 14 623-624 (1965)
  6. B. D. Josephson "Inequality for the specific heat: I. Derivation", Proceedings of the Physical Society 92 pp. 269-275 (1967)
  7. B. D. Josephson "Inequality for the specific heat: II. Application to critical phenomena", Proceedings of the Physical Society 92 pp. 276-284 (1967)
  8. Alan D. Sokal "Rigorous proof of the high-temperature Josephson inequality for critical exponents", Journal of Statistical Physics 25 pp. 51-56 (1981)
  9. David A. Liberman "Another Relation Between Thermodynamic Functions Near the Critical Point of a Simple Fluid", Journal of Chemical Physics 44 419-420 (1966)
  10. G. S. Rushbrooke "On the Thermodynamics of the Critical Region for the Ising Problem", Journal of Chemical Physics 39, 842-843 (1963)
  11. John W. Essam and Michael E. Fisher "Padé Approximant Studies of the Lattice Gas and Ising Ferromagnet below the Critical Point", Journal of Chemical Physics 38, 802-812 (1963)
  12. B. Widom "Degree of the Critical Isotherm", Journal of Chemical Physics 41 pp. 1633-1634 (1964)