Equations of state for hard sphere mixtures: Difference between revisions
Carl McBride (talk | contribs) m (Slight change to introduction (again).) |
Carl McBride (talk | contribs) m (Added mixtures category.) |
||
| Line 28: | Line 28: | ||
#[http://dx.doi.org/10.1063/1.2187491 Hendrik Hansen-Goos and Roland Roth "A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres", Journal of Chemical Physics '''124''' 154506 (2006)] | #[http://dx.doi.org/10.1063/1.2187491 Hendrik Hansen-Goos and Roland Roth "A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres", Journal of Chemical Physics '''124''' 154506 (2006)] | ||
[[category: equations of state]] | [[category: equations of state]] | ||
[[category: mixtures]] | |||
Revision as of 14:52, 27 November 2008
The following are equations of state for mixtures of hard spheres.
Mansoori, Carnahan, Starling, and Leland
The Mansoori, Carnahan, Starling, and Leland equation of state is given by (Ref. 1 Eq. 7):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = \frac{(1+\xi + \xi^2)- 3\xi(y_1 + y_2 \xi) -\xi^3y_3 }{(1-\xi)^{-3}}}
where
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \xi = \sum_{i=1}^m \frac{\pi}{6} \rho \sigma_i^3 x_i}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} is the number of components, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma_i} is the diameter of the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} th component, and is the mole fraction, such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^m x_i =1} .
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_1 = \sum_{j>i=1}^m \Delta_{ij} \frac{\sigma_i + \sigma_j}{\sqrt{\sigma_i \sigma_j}} }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y_3 = \left[ \sum_{i=1}^m \left(\frac{\xi_i}{\xi} \right)^{2/3} x_i^{1/3} \right]^3 }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{ij} = \frac{\sqrt{\xi_i \xi_j}}{\xi} \frac{(\sigma_i - \sigma_j)^2}{\sigma_i \sigma_j} \sqrt{x_i x_j}}
Santos, Yuste and López De Haro
Ref. 2
Hansen-Goos and Roth
Ref. 3 Based on the Carnahan-Starling equation of state
References
- G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, Jr. "Equilibrium Thermodynamic Properties of the Mixture of Hard Spheres", Journal of Chemical Physics 54 pp. 1523-1525 (1971)
- Andrés Santos; Santos Bravo Yuste; Mariano López De Haro "Equation of state of a multicomponent d-dimensional hard-sphere fluid", Molecular Physics 96 pp. 1-5 (1999)
- Hendrik Hansen-Goos and Roland Roth "A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres", Journal of Chemical Physics 124 154506 (2006)