Prigogine-Defay ratio: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added the equation and another reference.)
m (Added a recent publication)
Line 1: Line 1:
{{stub-general}}
{{stub-general}}
The '''Prigogine-Defay ratio''' is given by (Ref. 2 Eq. 1):
The '''Prigogine-Defay ratio'''<ref>I. Prigogine and R. Defay "Chemical Thermodynamics" Longman (1954) ISBN 0582462835 (out of print)</ref>  is given by (Eq. 1 of <ref>[http://dx.doi.org/10.1063/1.2374894 Jürn W. P. Schmelzer and Ivan Gutzow "The Prigogine-Defay ratio revisited", Journal of Chemical Physics '''125''' 184511 (2006)]</ref>):


:<math>\Pi = \frac{1}{VT} \left. \frac{\Delta C_p \Delta k}{ (\Delta \alpha)^2} \right|_{T=T_g}</math>
:<math>\Pi = \frac{1}{VT} \left. \frac{\Delta C_p \Delta k}{ (\Delta \alpha)^2} \right|_{T=T_g}</math>
Line 6: Line 6:
where <math>V</math> is the volume, <math>T</math> is the [[temperature]], <math>T_g</math> is the temperature of the [[glass transition]], <math>C_p</math> is the [[heat capacity  | isobaric heat capacity]], <math>k</math> is the [[compressibility]] and <math>\alpha</math> is the [[thermal expansion coefficient]].
where <math>V</math> is the volume, <math>T</math> is the [[temperature]], <math>T_g</math> is the temperature of the [[glass transition]], <math>C_p</math> is the [[heat capacity  | isobaric heat capacity]], <math>k</math> is the [[compressibility]] and <math>\alpha</math> is the [[thermal expansion coefficient]].
==References==
==References==
#I. Prigogine and R. Defay "Chemical Thermodynamics" Longman (1954) (out of print)
<references/>
#[http://dx.doi.org/10.1063/1.2374894 Jürn W. P. Schmelzer and Ivan Gutzow "The Prigogine-Defay ratio revisited", Journal of Chemical Physics '''125''' 184511 (2006)]
;Related reading
#[http://dx.doi.org/10.1063/1.2969899 R. M. Pick "The Prigogine–Defay ratio and the microscopic theory of supercooled liquids", Journal of Chemical Physics '''129''' 124115 (2008)]
*[http://dx.doi.org/10.1063/1.2969899 R. M. Pick "The Prigogine–Defay ratio and the microscopic theory of supercooled liquids", Journal of Chemical Physics '''129''' 124115 (2008)]
*[http://dx.doi.org/10.1063/1.3664180 R. Casalini, R. F. Gamache, and C. M. Roland "-scaling and the Prigogine–Defay ratio in liquids", Journal of Chemical Physics '''135''' 224501 (2011)]
 
 
[[Category: Complex systems]]
[[Category: Complex systems]]

Revision as of 14:48, 12 December 2011

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The Prigogine-Defay ratio[1] is given by (Eq. 1 of [2]):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi = \frac{1}{VT} \left. \frac{\Delta C_p \Delta k}{ (\Delta \alpha)^2} \right|_{T=T_g}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_g} is the temperature of the glass transition, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p} is the isobaric heat capacity, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} is the compressibility and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is the thermal expansion coefficient.

References

Related reading