Prigogine-Defay ratio: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: {{stub-general}} ==References== #I. Prigogine and R. Defay "Chemical Thermodynamics" Longman (1954) (out of print) #[http://dx.doi.org/10.1063/1.2969899 R. M. Pick "The Prigogine–Defay r...)
 
(Added the equation and another reference.)
Line 1: Line 1:
{{stub-general}}
{{stub-general}}
The '''Prigogine-Defay ratio''' is given by (Ref. 2 Eq. 1):
:<math>\Pi = \frac{1}{VT} \left. \frac{\Delta C_p \Delta k}{ (\Delta \alpha)^2} \right|_{T=T_g}</math>
where <math>V</math> is the volume, <math>T</math> is the [[temperature]], <math>T_g</math> is the temperature of the [[glass transition]], <math>C_p</math> is the [[heat capacity  | isobaric heat capacity]], <math>k</math> is the [[compressibility]] and <math>\alpha</math> is the [[thermal expansion coefficient]].
==References==
==References==
#I. Prigogine and R. Defay "Chemical Thermodynamics" Longman (1954) (out of print)
#I. Prigogine and R. Defay "Chemical Thermodynamics" Longman (1954) (out of print)
#[http://dx.doi.org/10.1063/1.2374894 Jürn W. P. Schmelzer and Ivan Gutzow "The Prigogine-Defay ratio revisited", Journal of Chemical Physics '''125''' 184511 (2006)]
#[http://dx.doi.org/10.1063/1.2969899 R. M. Pick "The Prigogine–Defay ratio and the microscopic theory of supercooled liquids", Journal of Chemical Physics '''129''' 124115 (2008)]
#[http://dx.doi.org/10.1063/1.2969899 R. M. Pick "The Prigogine–Defay ratio and the microscopic theory of supercooled liquids", Journal of Chemical Physics '''129''' 124115 (2008)]
[[Category: Complex systems]]
[[Category: Complex systems]]

Revision as of 13:53, 2 October 2008

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The Prigogine-Defay ratio is given by (Ref. 2 Eq. 1):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi = \frac{1}{VT} \left. \frac{\Delta C_p \Delta k}{ (\Delta \alpha)^2} \right|_{T=T_g}}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the temperature, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_g} is the temperature of the glass transition, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p} is the isobaric heat capacity, is the compressibility and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} is the thermal expansion coefficient.

References

  1. I. Prigogine and R. Defay "Chemical Thermodynamics" Longman (1954) (out of print)
  2. Jürn W. P. Schmelzer and Ivan Gutzow "The Prigogine-Defay ratio revisited", Journal of Chemical Physics 125 184511 (2006)
  3. R. M. Pick "The Prigogine–Defay ratio and the microscopic theory of supercooled liquids", Journal of Chemical Physics 129 124115 (2008)