Binder cumulant: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(New page: {{Stub-general}} The '''Binder cumulant''' for an Ising model with zero field, is given by :<math>U_4 = 1- \frac{\langle m^4 \rangle }{3\langle m^2 \rangle^2 }</math> . ...)
 
No edit summary
Line 2: Line 2:
The '''Binder cumulant''' for an [[Ising Models |Ising model]] with zero field, is given by
The '''Binder cumulant''' for an [[Ising Models |Ising model]] with zero field, is given by


:<math>U_4 = 1- \frac{\langle m^4 \rangle }{3\langle m^2 \rangle^2 }</math> .
:<math>U_4 = 1- \frac{\langle m^4 \rangle }{3\langle m^2 \rangle^2 }</math>  


where ''m'' is the [[Order parameters |order parameter]].
In the [[thermodynamic limit]], where the system size <math>L \rightarrow \infty</math>, <math>U_4 \rightarrow 0</math> for <math>T > T_c</math>, and <math>U_4 \rightarrow 2/3</math> for <math>T < T_c</math>.
In the [[thermodynamic limit]], where the system size <math>L \rightarrow \infty</math>, <math>U_4 \rightarrow 0</math> for <math>T > T_c</math>, and <math>U_4 \rightarrow 2/3</math> for <math>T < T_c</math>.


==References==
==References==
#[http://dx.doi.org/10.1007/BF01293604 K. Binder "Finite size scaling analysis of ising model block distribution functions", Zeitschrift für Physik B Condensed Matter '''43''' pp. 119-140 (1981)]
#[http://dx.doi.org/10.1007/BF01293604 K. Binder "Finite size scaling analysis of ising model block distribution functions", Zeitschrift für Physik B Condensed Matter '''43''' pp. 119-140 (1981)]

Revision as of 18:42, 8 November 2007

This article is a 'stub' page, it has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add sufficient material to this article then please remove the {{Stub-general}} template from this page.

The Binder cumulant for an Ising model with zero field, is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_4 = 1- \frac{\langle m^4 \rangle }{3\langle m^2 \rangle^2 }}

where m is the order parameter. In the thermodynamic limit, where the system size Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L \rightarrow \infty} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_4 \rightarrow 0} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T > T_c} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_4 \rightarrow 2/3} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T < T_c} .

References

  1. K. Binder "Finite size scaling analysis of ising model block distribution functions", Zeitschrift für Physik B Condensed Matter 43 pp. 119-140 (1981)