Van der Waals equation of state: Difference between revisions
Carl McBride (talk | contribs) |
Carl McBride (talk | contribs) No edit summary |
||
| Line 4: | Line 4: | ||
where: | where: | ||
* <math> p </math> is the pressure | * <math> p </math> is the [[pressure]], | ||
* <math> V </math> is the volume | * <math> V </math> is the volume, | ||
* <math> n </math> is the number of moles | * <math> n </math> is the number of moles, | ||
* <math> T </math> is the absolute temperature | * <math> T </math> is the absolute [[temperature]], | ||
* <math> R </math> is the | * <math> R </math> is the so-called gas constant; <math> R = N_A k_B </math>, with <math> N_A </math> being the [[Avogadro constant]] and <math>k_B</math> being the [[Boltzmann constant]]. | ||
The van der Waals equation of state takes into account two features that are absent in the [[Equation of State: Ideal Gas | ideal Gas]] equation of state: | The van der Waals equation of state takes into account two features that are absent in the [[Equation of State: Ideal Gas | ideal Gas]] equation of state: | ||
Revision as of 15:52, 24 September 2007
The van der Waals equation of state, developed by Johannes Diderik van der Waals, can be written as
- .
where:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p } is the pressure,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V } is the volume,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n } is the number of moles,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T } is the absolute temperature,
- is the so-called gas constant; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R = N_A k_B } , with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N_A } being the Avogadro constant and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_B} being the Boltzmann constant.
The van der Waals equation of state takes into account two features that are absent in the ideal Gas equation of state: The parameter Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b } introduces somehow the repulsive behavior between pairs of molecules at short distances, it represents the minimum molar volume of the system, whereas measures the attractive interactions between the molecules. The van der Waals equation of state leads to a liquid-vapor equilibrium at low temperatures, with the corresponding critical point.
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a= \frac{27}{64}\frac{R^2T_c^2}{P_c}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b= \frac{RT_c}{8P_c}}
Critical point
The critical point for the van der Waals equation of state can be found at
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_c= \frac{8a}{27bR}} ,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_c=\frac{a}{27b^2}}
and at
- .
Dimensionless formulation
If one takes the following quantities
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{p} = \frac{p}{p_c};~ \tilde{v} = \frac{v}{v_c}; ~\tilde{t} = \frac{T}{T_c};}
one arrives at
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{p} = \frac{8\tilde{t}}{3\tilde{v} -1} -\frac{3}{\tilde{v}^2}}
The following image is a plot of the isotherms Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T/T_c} = 0.85, 0.90, 0.95, 1.0 and 1.05 (from bottom to top) for the Van der Waals equation of state:

Interesting reading
- J. D. van der Waals "On the Continuity of the Gaseous and Liquid States", Dover Publications ISBN: 0486495930
- Johannes Diderik van der Waals "The Equation of State for Gases and Liquids", Nobel Lecture, December 12, 1910
- Luis Gonzalez MacDowell and Peter Virnau "El integrante lazo de Van der Waals", Anales de la Real Sociedad Española de Química 101 #1 pp. 19-30 (2005)