Legendre transform: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 27: Line 27:


==Example==
==Example==
==See also==
*[[Thermodynamic relations]]
==References==
==References==
#Mary L. Boas "Mathematical methods in the Physical Sciences" John Wiley & Sons, Second Edition.
#Mary L. Boas "Mathematical methods in the Physical Sciences" John Wiley & Sons, Second Edition.
#[http://www.iupac.org/publications/pac/2001/7308/7308x1349.html R. A. Alberty "Use of Legendre transforms in chemical thermodynamics", Pure and Applied Chemistry '''73''' pp. 1349-1380 (2001)]

Revision as of 11:17, 28 May 2007

The Legendre transform (Adrien-Marie Legendre) is used to perform a change change of variables (see, for example, Ref. 1, Chapter 4 section 11 Eq. 11.20 - 11.25):

If one has the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x,y);} one can write

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy}

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p= \partial f/ \partial x} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q= \partial f/ \partial y} , thus

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df = p~dx + q~dy}

If one subtracts Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(qy)} from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df} , one has

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df- d(qy) = p~dx + q~dy -q~dy - y~dq}

or

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(f-qy)=p~dx - y~dq }

Defining the function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g=f-qy} then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dg = p~dx + q~dy}

The partial derivatives of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial g}{\partial x}= p, ~~~ \frac{\partial g}{\partial q}= -y} .

Example

See also

References

  1. Mary L. Boas "Mathematical methods in the Physical Sciences" John Wiley & Sons, Second Edition.
  2. R. A. Alberty "Use of Legendre transforms in chemical thermodynamics", Pure and Applied Chemistry 73 pp. 1349-1380 (2001)