Kern and Frenkel patchy model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a recent publication)
m (→‎References: Added a recent publication)
Line 36: Line 36:
;Related reading
;Related reading
*[http://dx.doi.org/10.1063/1.3689308 Christoph Gögelein, Flavio Romano, Francesco Sciortino, and Achille Giacometti "Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory", Journal of Chemical Physics '''136''' 094512 (2012)]
*[http://dx.doi.org/10.1063/1.3689308 Christoph Gögelein, Flavio Romano, Francesco Sciortino, and Achille Giacometti "Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory", Journal of Chemical Physics '''136''' 094512 (2012)]
*[http://dx.doi.org/10.1063/1.4722477 Emanuela Bianchi, Günther Doppelbauer, Laura Filion, Marjolein Dijkstra, and Gerhard Kahl "Predicting patchy particle crystals: Variable box shape simulations and evolutionary algorithms", Journal of Chemical Physics '''136''' 214102 (2012)]
[[category: models]]
[[category: models]]

Revision as of 13:58, 7 June 2012

The Kern and Frenkel [1] patchy model is an amalgamation of the hard sphere model with attractive square well patches (HSSW). The potential has an angular aspect, given by (Eq. 1)


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}({\mathbf r}_{ij}; \tilde{{\mathbf \Omega}}_i, \tilde{{\mathbf \Omega}}_j) =\Phi_{ij}^{ \mathrm{HSSW}}({\mathbf r}_{ij}) \cdot f(\tilde{{\mathbf \Omega}}_i, \tilde{{\mathbf \Omega}}_j) }


where the radial component is given by the square well model (Eq. 2)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{ij}^{ \mathrm{HSSW}} \left({\mathbf r}_{ij} \right) = \left\{ \begin{array}{ccc} \infty & ; & r < \sigma \\ - \epsilon & ; &\sigma \le r < \lambda \sigma \\ 0 & ; & r \ge \lambda \sigma \end{array} \right. }

and the orientational component is given by (Eq. 3)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{ij} \left(\hat{ {\mathbf r}}_{ij}; \tilde{{\mathbf \Omega}}_i, \tilde{{\mathbf \Omega}}_j \right) = \left\{ \begin{array}{clc} 1 & \mathrm{if} & \left\{ \begin{array}{ccc} & (\hat{e}_\alpha\cdot\hat{r}_{ij} \leq \cos \delta) & \mathrm{for~some~patch~\alpha~on~}i \\ \mathrm{and} & (\hat{e}_\beta\cdot\hat{r}_{ji} \leq \cos \delta) & \mathrm{for~some~patch~\beta~on~}j \end{array} \right. \\ 0 & \mathrm{otherwise} & \end{array} \right. }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} is the solid angle of a patch (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha, \beta, ...} ) whose axis is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{e}} (see Fig. 1 of Ref. 1), forming a conical segment.

Two patches

The "two-patch" Kern and Frenkel model has been extensively studied by Giacometti et al. [2].

Four patches

Main article: Anisotropic particles with tetrahedral symmetry

References

Related reading