Chemical potential: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Reverted edits by 70.135.118.126 (talk) to last revision by Nice and Tidy)
m (→‎References: Added a recent publication)
Line 40: Line 40:
*[http://dx.doi.org/10.1119/1.17844      G. Cook and R. H. Dickerson "Understanding the chemical potential",  American Journal of Physics '''63''' pp. 737-742 (1995)]
*[http://dx.doi.org/10.1119/1.17844      G. Cook and R. H. Dickerson "Understanding the chemical potential",  American Journal of Physics '''63''' pp. 737-742 (1995)]
*[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)]
*[http://dx.doi.org/10.1007/s10955-005-8067-x T. A. Kaplan "The Chemical Potential", Journal of Statistical Physics '''122''' pp. 1237-1260 (2006)]
*[http://dx.doi.org/10.1063/1.4758757  Federico G. Pazzona, Pierfranco Demontis, and Giuseppe B. Suffritti "Chemical potential evaluation in NVT lattice-gas simulations", Journal of Chemical Physics '''137''' 154106 (2012)]
[[category:classical thermodynamics]]
[[category:classical thermodynamics]]
[[category:statistical mechanics]]
[[category:statistical mechanics]]

Revision as of 12:04, 22 October 2012

Classical thermodynamics

Definition:

where is the Gibbs energy function, leading to

where is the Helmholtz energy function, is the Boltzmann constant, is the pressure, is the temperature and is the volume.

Statistical mechanics

The chemical potential is the derivative of the Helmholtz energy function with respect to the number of particles

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N} is the partition function for a fluid of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} identical particles

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_N= \left( \frac{2\pi m k_BT}{h^2} \right)^{3N/2} Q_N}

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Q_N} is the configurational integral

Kirkwood charging formula

The Kirkwood charging formula is given by [1]

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \mu_{\rm ex} = \rho \int_0^1 d\lambda \int \frac{\partial \beta \Phi_{12} (r,\lambda)}{\partial \lambda} {\rm g}(r,\lambda) dr}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi_{12}(r)} is the intermolecular pair potential and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\rm g}(r)} is the pair correlation function.

See also

References

Related reading