Replica method: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
m (Added disambiguation)
 
Line 1: Line 1:
:''This article is about integral equations. For other the simulation method, see [[Replica-exchange simulated tempering]] or [[Replica-exchange molecular dynamics]]''.
The [[Helmholtz energy function]] of fluid in a matrix of configuration  
The [[Helmholtz energy function]] of fluid in a matrix of configuration  
<math>\{ {\mathbf q}^{N_0} \}</math> in the [[Canonical ensemble]] is given by:
<math>\{ {\mathbf q}^{N_0} \}</math> in the [[Canonical ensemble]] is given by:

Latest revision as of 17:56, 11 February 2010

This article is about integral equations. For other the simulation method, see Replica-exchange simulated tempering or Replica-exchange molecular dynamics.

The Helmholtz energy function of fluid in a matrix of configuration Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ {\mathbf q}^{N_0} \}} in the Canonical ensemble is given by:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta A_1 ({\mathbf q}^{N_0}) = \log Z_1 ({\mathbf q}^{N_0}) = \log \left( \frac{1}{N_1!} \int \exp [- \beta (H_{11}({\mathbf r}^{N_1}) + H_{10}({\mathbf r}^{N_1}, {\mathbf q}^{N_0}) )]~d \{ {\mathbf r} \}^{N_1} \right)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_1 ({\mathbf q}^{N_0})} is the fluid partition function, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{11}} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{10}} and are the pieces of the Hamiltonian corresponding to the fluid-fluid, fluid-matrix and matrix-matrix interactions. Assuming that the matrix is a configuration of a given fluid, with interaction hamiltonian Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{00}} , we can average over matrix configurations to obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta \overline{A}_1 = \frac{1}{N_0!Z_0} \int \exp [-\beta_0 H_{00} ( q^{N_0})] ~ \log Z_1 (q^{N_0}) ~d \{ q \}^{N_0}}

(see Refs. 1 and 2)

An important mathematical trick to get rid of the logarithm inside of the integral is to use the mathematical identity
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log x = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s}x^s} .

One can apply this trick to the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log Z_1} we want to average, and replace the resulting power by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} copies of the expression for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_1} (replicas). The result is equivalent to evaluate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{A}_1} as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\beta\overline{A}_1=\lim_{s\to 0}\frac{d}{ds}\left(\frac{Z^{\rm rep}(s)}{Z_0}\right) } ,

where is the partition function of a mixture with Hamiltonian

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta H^{\rm rep} (r^{N_1}, q^{N_0}) = \frac{\beta_0}{\beta}H_{00} (q^{N_0}) + \sum_{\lambda=1}^s \left( H_{01}^\lambda (r^{N_1}_\lambda, q^{N_0}) + H_{11}^\lambda (r^{N_1}_\lambda, q^{N_0})\right).}

This Hamiltonian describes a completely equilibrated system of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s+1} components; the matrix the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s} identical non-interacting replicas of the fluid. Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_0=Z^{\rm rep}(0)} , then

Thus the relation between the Helmholtz energy function of the non-equilibrium partially frozen system and the replicated (equilibrium) system is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - \beta \overline{A}_1 = \lim_{s \rightarrow 0} \frac{{\rm d}}{{\rm d}s} [- \beta A^{\rm rep} (s) ] } .

Interesting reading[edit]

  • Viktor Dotsenko "Introduction to the Replica Theory of Disordered Statistical Systems", Collection Alea-Saclay: Monographs and Texts in Statistical Physics, Cambridge University Press (2000)

References[edit]

  1. S F Edwards and P W Anderson "Theory of spin glasses",Journal of Physics F: Metal Physics 5 pp. 965-974 (1975)
  2. S F Edwards and R C Jones "The eigenvalue spectrum of a large symmetric random matrix", Journal of Physics A: Mathematical and General 9 pp. 1595-1603 (1976)