Potts model: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Trivial tidy up.)
m (Added DOI to a paper.)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The '''Potts model''' was proposed by Renfrey B. Potts in 1952 (Ref. 1). The Potts model is a generalisation of the [[Ising Models | Ising model]] to more than two components. For a general discussion on Potts models see Refs. 2 and 3.
The '''Potts model''', proposed by Renfrey B. Potts in 1952 <ref>[http://dx.doi.org/10.1017/S0305004100027419 Renfrey B. Potts "Some generalized order-disorder transformations", Proceedings of the Cambridge Philosophical Society '''48''' pp. 106-109 (1952)]</ref><ref>Rodney J. Baxter  "Exactly Solved Models in Statistical Mechanics", Academic Press (1982) ISBN 0120831821 Chapter 12 (freely available [http://tpsrv.anu.edu.au/Members/baxter/book/Exactly.pdf pdf])</ref>, is a generalisation of the [[Ising Models | Ising model]] to more than two components. For a general discussion on Potts models see Refs <ref>[http://dx.doi.org/10.1103/RevModPhys.54.235  F. Y. Wu "The Potts model", Reviews of Modern Physics '''54''' pp. 235-268 (1982)]</ref><ref>[http://dx.doi.org/10.1103/RevModPhys.55.315  F. Y. Wu "Erratum: The Potts model", Reviews of Modern Physics '''55''' p. 315 (1983)]</ref>.  
In practice one has a lattice system. The sites of the lattice can be occupied by
In practice one has a lattice system. The sites of the lattice can be occupied by
particles of different ''species'', <math> S=1,2, \cdots, q </math>.
particles of different ''species'', <math> S=1,2, \cdots, q </math>.
Line 8: Line 8:
where <math> K </math> is the coupling constant, <math> \langle ij \rangle </math> indicates
where <math> K </math> is the coupling constant, <math> \langle ij \rangle </math> indicates
that the sum is performed exclusively over pairs of nearest neighbour sites,  and <math> \delta(S_i,S_j) </math> is the [[Kronecker delta|Kronecker delta]].
that the sum is performed exclusively over pairs of nearest neighbour sites,  and <math> \delta(S_i,S_j) </math> is the [[Kronecker delta|Kronecker delta]].
Note that the particular case <math> q=2 </math> is equivalent to the [[Ising Models | Ising model]]
Note that the particular case <math> q=2 </math> is equivalent to the [[Ising Models | Ising model]].
 
==Phase transitions==
Considering a symmetric situation (i.e. equal [[chemical potential]] for all the species):
 
:<math> \mu_1 = \mu_2 = \cdots = \mu_q </math>;
 
the Potts model exhibits  order-disorder [[phase transitions]]. For space dimensionality <math> d=2 </math>, and low values of <math> q </math> the transitions are continuous (<math> E(T) </math> is a continuous function), but the [[heat capacity]], <math> C(T) = (\partial E/\partial T) </math>, diverges at the transition [[temperature]]. The critical behaviour of
different values of <math> q </math> belong to (or define) different [[universality classes]] of criticality
For space dimensionality <math> d=3 </math>, the transitions for <math> q \ge 3 </math> are [[First-order transitions |first order]] (<math> E </math>  shows a discontinuity at the transition temperature).
==See also==
==See also==
*[[Ashkin-Teller model]]
*[[Ashkin-Teller model]]
*[[Kac model]]
*[[Kac model]]
==References==
==References==
#Renfrey B. Potts "Some generalized order-disorder transformations", Proceedings of the Cambridge Philosophical Society '''48''' pp. 106−109 (1952)
<references/>
#[http://dx.doi.org/10.1103/RevModPhys.54.235 F. Y. Wu "The Potts model", Reviews of Modern Physics '''54''' pp. 235-268 (1982)]
'''Related reading'''
#[http://dx.doi.org/10.1103/RevModPhys.55.315  F. Y. Wu "Erratum: The Potts model", Reviews of Modern Physics '''55''' p. 315 (1983)]
*[http://dx.doi.org/10.1063/1.3250934 Nathan Duff and Baron Peters "Nucleation in a Potts lattice gas model of crystallization from solution", Journal of Chemical Physics '''131''' 184101 (2009)]
[[category:models]]
[[category:models]]

Latest revision as of 12:22, 11 November 2009

The Potts model, proposed by Renfrey B. Potts in 1952 [1][2], is a generalisation of the Ising model to more than two components. For a general discussion on Potts models see Refs [3][4]. In practice one has a lattice system. The sites of the lattice can be occupied by particles of different species, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=1,2, \cdots, q } .

The energy of the system, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } , is defined as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = - K \sum_{ \langle ij \rangle } \delta (S_i,S_j) }

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K } is the coupling constant, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle ij \rangle } indicates that the sum is performed exclusively over pairs of nearest neighbour sites, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(S_i,S_j) } is the Kronecker delta. Note that the particular case Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q=2 } is equivalent to the Ising model.

Phase transitions[edit]

Considering a symmetric situation (i.e. equal chemical potential for all the species):

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_1 = \mu_2 = \cdots = \mu_q } ;

the Potts model exhibits order-disorder phase transitions. For space dimensionality Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=2 } , and low values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q } the transitions are continuous (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E(T) } is a continuous function), but the heat capacity, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(T) = (\partial E/\partial T) } , diverges at the transition temperature. The critical behaviour of different values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q } belong to (or define) different universality classes of criticality For space dimensionality Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle d=3 } , the transitions for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q \ge 3 } are first order ( shows a discontinuity at the transition temperature).

See also[edit]

References[edit]

Related reading