Neon

From SklogWiki
Jump to: navigation, search

Neon (Ne)

Models[edit]

Buckingham potential[edit]

The Buckingham potential for neon is given by (Eq. 26 [1]):

E(r) = 25.7 \times 10^{-10} e^{-r/0.235} -9 \times 10^{-12} r^{-6}

where E is in ergs ( 10−7 J) and r in Å.

HBV potential[edit]

The Hellmann-Bich-Vogel potential [2].

Lennard-Jones parameters[edit]

Some Lennard-Jones parameters for neon are listed in the following table:

Authors \epsilon (meV) \sigma (nm) Reference
Herrero 3.0840 0.2782 [3]
Ramírez and Herrero 3.2135 0.2782 [4]

Leonhard and Deiters potential[edit]

[5].

NE2 potential[edit]

[6].

Phase diagram[edit]

The phase diagram for temperatures in the range of 17–50 K and pressures between 10−2 and 2×103 bar has been calculated in Ref. 2. The critical point was located at T_c =46.7 ~{\mathrm K} and p_c = 27.7 bar (Ref. 2 Table I), and the triple point at T_{tp} =24.55 ~{\mathrm K} and p_{tp} = 0.315 bar (Ref. 2 Table II).

Crystallization line[edit]

The structural regularities along the crystallization line has been studied by way of path integral Monte Carlo simulations and the Ornstein-Zernike pair equation [7].

Virial coefficients[edit]

Virial coefficients [8].

References[edit]

  1. R. A. Buckingham "The Classical Equation of State of Gaseous Helium, Neon and Argon", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 168 pp. 264-283 (1938)
  2. Robert Hellmann , Eckard Bich and Eckhard Vogel "Ab initio potential energy curve for the neon atom pair and thermophysical properties of the dilute neon gas. I. Neon–neon interatomic potential and rovibrational spectra", Molecular Physics 106 pp. 133-140 (2008)
  3. Carlos P. Herrero "Isotope effects in structural and thermodynamic properties of solid neon", Physical Review B 65 014112 (2001)
  4. R. Ramírez and C. P. Herrero "Quantum path-integral study of the phase diagram and isotope effects of neon", Journal of Chemical Physics 129 204502 (2008)
  5. K. Leonhard and U. K. Deiters "Monte Carlo simulations of neon and argon using ab initio potentials", Molecular Physics 98 pp. 1603-1616 (2000)
  6. Rolf Eggenberger, Stefan Gerber, Hanspeter Huber and Marc Welker "A new ab initio potential for the neon dimer and its application in molecular dynamics simulations of the condensed phase", Molecular Physics 82 pp. 689-699 (1994)
  7. Luis M. Sesé "Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line", Journal of Chemical Physics 144 094505 (2016)
  8. Jonas Wiebke, Elke Pahl, and Peter Schwerdtfeger "Up to fourth virial coefficients from simple and efficient internal-coordinate sampling: Application to neon", Journal of Chemical Physics 137 014508 (2012)

Related reading