Flexible molecules

From SklogWiki
Jump to: navigation, search

Modelling of internal degrees of freedom, usual techniques:

Bond distances[edit]

Atoms linked by a chemical bond (stretching) using the harmonic spring approximation:

 \Phi_{str} (r_{12}) = \frac{1}{2} K_{str} ( r_{12} - b_0 )^2

However, this internal coordinates are very often kept constrained (fixed bond distances)

Bond Angles[edit]

Bond sequence: 1-2-3:

Bond Angle:  \left. \theta \right.

 \cos \theta = \frac{ \vec{r}_{21} \cdot \vec{r}_{23} } {|\vec{r}_{21}| |\vec{r}_{23}|}

Two typical forms are used to model the bending potential:


\Phi_{bend}(\theta) = \frac{1}{2} k_{\theta} \left( \theta - \theta_0 \right)^2

\Phi_{bend}(\cos \theta) = \frac{1}{2} k_{c} \left( \cos \theta - c_0 \right)^2

Dihedral angles. Internal Rotation[edit]

Bond sequence: 1-2-3-4 Dihedral angle ( \left. \phi \right. ) definition:

Consider the following vectors:

  •  \vec{a}  \equiv \frac{\vec{r}_3 -\vec{r}_2}{|\vec{r}_3 -\vec{r}_2|} ; Unit vector in the direction of the 2-3 bond
  •  \vec{b}  \equiv \frac{ \vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} } 
{ |\vec{r}_{21} - (\vec{r}_{21}\cdot \vec{a} ) \vec{a} | } ; normalized component of  \vec{r}_{21} ortogonal to  \vec{a}
  •  \vec{e}_{34}  \equiv \frac{ \vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} }
{ |\vec{r}_{34} - (\vec{r}_{34}\cdot \vec{a} ) \vec{a} | } ; normalized component of  \vec{r}_{34} ortogonal to  \vec{a}
  •  \vec{c} = \vec{a} \times \vec{b}
  •  e_{34} = (\cos \phi) \vec{a} + (\sin \phi) \vec{c}

For molecules with internal rotation degrees of freedom (e.g. n-alkanes), a torsional potential is usually modelled as:

  • 
\Phi_{tors} \left(\phi\right) = \sum_{i=0}^n a_i \left( \cos \phi \right)^i

or

  • 
\Phi_{tors} \left(\phi\right) = \sum_{i=0}^n b_i  \cos \left( i \phi \right)

Van der Waals intramolecular interactions[edit]

For pairs of atoms (or sites) which are separated by a certain number of chemical bonds:

Pair interactions similar to the typical intermolecular potentials are frequently used (e.g. Lennard-Jones potentials)