# Unitary matrices

Revision as of 12:12, 11 February 2008 by Dduque (talk | contribs) (New page: A '''unitary matrix''' is a complex matrix <math>U</math> satisfying the condition :<math>U^\dagger U = UU^\dagger = I_n\,</math> where <math>I</math> is the identity matrix...)

A **unitary matrix** is a complex matrix satisfying the condition

where is the identity matrix and is the conjugate transpose (also called the Hermitian adjoint) of . Note this condition says that a matrix is unitary if and only if it has an inverse which is equal to its conjugate transpose

A unitary matrix in which all entries are real is called an orthogonal matrix.