Thermodynamic integration: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
(Added some equations)
m (Tidy up)
Line 1: Line 1:
'''Thermodynamic integration''' is used to calculate the difference in the [[Helmholtz energy function]], <math>A</math>, between two states.
'''Thermodynamic integration''' is used to calculate the difference in the [[Helmholtz energy function]], <math>A</math>, between two states.
The path must be ''continuous'' and ''reversible''.
The path '''must''' be ''continuous'' and ''reversible'' (Ref. 1 Eq. 3.5)
One has a  continuously variable energy function <math>U_\lambda</math> such that
<math>\lambda=0</math>,  <math>U_\lambda=U_0</math> and <math>\lambda=1</math>, <math>U_\lambda=U</math>


:<math>\Delta A = A - A_0 = \int_0^1 d\lambda \left\langle \frac{\partial U_\lambda}{\partial \lambda} \right\rangle_{\lambda}</math>
:<math>\Delta A = A(\lambda) - A(\lambda_0) = \int_{\lambda_0}^{\lambda\left\langle \frac{\partial U(\mathbf{r},\lambda)}{\partial \lambda} \right\rangle_{\lambda} ~\mathrm{d}\lambda</math>
 
where
 
:<math>\left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U</math>.
==Isothermal integration==
==Isothermal integration==
Ref. 1 Eq. 5:
At constant [[temperature]] (Ref. 2 Eq. 5):


:<math>\frac{A(\rho_2,T)}{Nk_BT} = \frac{A(\rho_1,T)}{Nk_BT} + \int_{\rho_1}^{\rho_2} \frac{p(\rho)}{k_B T \rho^2} ~\mathrm{d}\rho </math>
:<math>\frac{A(\rho_2,T)}{Nk_BT} = \frac{A(\rho_1,T)}{Nk_BT} + \int_{\rho_1}^{\rho_2} \frac{p(\rho)}{k_B T \rho^2} ~\mathrm{d}\rho </math>
==Isobaric integration==
==Isobaric integration==
Ref. 1 Eq. 6:
At constant [[pressure]] (Ref. 2 Eq. 6):


:<math>\frac{G(T_2,p)}{Nk_BT_2} = \frac{G(T_1,p)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{H(T)}{Nk_BT^2} ~\mathrm{d}T </math>
:<math>\frac{G(T_2,p)}{Nk_BT_2} = \frac{G(T_1,p)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{H(T)}{Nk_BT^2} ~\mathrm{d}T </math>
Line 20: Line 14:
where <math>G</math> is the [[Gibbs energy function]] and <math>H</math> is the [[enthalpy]].
where <math>G</math> is the [[Gibbs energy function]] and <math>H</math> is the [[enthalpy]].
==Isochoric integration==
==Isochoric integration==
Ref. 1 Eq. 7:
At constant volume (Ref. 2 Eq. 7):


:<math>\frac{A(T_2,V)}{Nk_BT_2} = \frac{A(T_1,V)}{Nk_BT_1}  - \int_{T_1}^{T_2} \frac{U(T)}{Nk_BT^2} ~\mathrm{d}T </math>
:<math>\frac{A(T_2,V)}{Nk_BT_2} = \frac{A(T_1,V)}{Nk_BT_1}  - \int_{T_1}^{T_2} \frac{U(T)}{Nk_BT^2} ~\mathrm{d}T </math>
Line 28: Line 22:
*[[Gibbs-Duhem integration]]
*[[Gibbs-Duhem integration]]
==References==
==References==
#[http://dx.doi.org/10.1103/RevModPhys.48.587      J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics '''48''' pp. 587 - 671 (1976)]
#[http://dx.doi.org/10.1088/0953-8984/20/15/153101  C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter '''20''' 153101 (2008)] (section 4)
#[http://dx.doi.org/10.1088/0953-8984/20/15/153101  C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter '''20''' 153101 (2008)] (section 4)
[[category:classical thermodynamics]]
[[category:classical thermodynamics]]

Revision as of 12:44, 5 August 2008

Thermodynamic integration is used to calculate the difference in the Helmholtz energy function, , between two states. The path must be continuous and reversible (Ref. 1 Eq. 3.5)

Isothermal integration

At constant temperature (Ref. 2 Eq. 5):

Isobaric integration

At constant pressure (Ref. 2 Eq. 6):

where is the Gibbs energy function and is the enthalpy.

Isochoric integration

At constant volume (Ref. 2 Eq. 7):

where is the internal energy.

See also

References

  1. J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics 48 pp. 587 - 671 (1976)
  2. C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter 20 153101 (2008) (section 4)