Thermodynamic integration: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
(→‎References: Added a recent publication)
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Used to calculate the free energy difference between two states.
'''Thermodynamic integration''' is used to calculate the difference in the [[Helmholtz energy function]], <math>A</math>, between two states.
The path must be ''continuous'' and ''reversible''.
The path '''must''' be ''continuous'' and ''reversible'', i.e., the system must evolve through a succession of equilibrium states (Ref. 1 Eq. 3.5)
One has a continuously variable energy function <math>U_\lambda</math> such that
<math>\lambda=0</math>,  <math>U_\lambda=U_0</math> and <math>\lambda=1</math>, <math>U_\lambda=U</math>


:<math>\Delta A = A - A_0 = \int_0^1 d\lambda \langle\frac{\partial U_\lambda}{\partial \lambda}\rangle_{\lambda}</math>
:<math>\Delta A = A(\lambda) - A(\lambda_0) = \int_{\lambda_0}^{\lambda}  \left\langle \frac{\partial U(\mathbf{r},\lambda)}{\partial \lambda} \right\rangle_{\lambda} ~\mathrm{d}\lambda</math>
==Isothermal integration==
At constant [[temperature]] (Ref. 2 Eq. 5):


where
:<math>\frac{A(\rho_2,T)}{Nk_BT} = \frac{A(\rho_1,T)}{Nk_BT} + \int_{\rho_1}^{\rho_2} \frac{p(\rho)}{k_B T \rho^2} ~\mathrm{d}\rho </math>
==Isobaric integration==
At constant [[pressure]] (Ref. 2 Eq. 6):


:<math>\left.U_\lambda\right.=(1-\lambda)U_0 + \lambda U</math>.
:<math>\frac{G(T_2,p)}{Nk_BT_2} = \frac{G(T_1,p)}{Nk_BT_1} - \int_{T_1}^{T_2} \frac{H(T)}{Nk_BT^2} ~\mathrm{d}T </math>
 
where <math>G</math> is the [[Gibbs energy function]] and <math>H</math> is the [[enthalpy]].
==Isochoric integration==
At constant volume (Ref. 2 Eq. 7):
 
:<math>\frac{A(T_2,V)}{Nk_BT_2} = \frac{A(T_1,V)}{Nk_BT_1}  - \int_{T_1}^{T_2} \frac{U(T)}{Nk_BT^2} ~\mathrm{d}T </math>
 
where <math>U</math> is the [[internal energy]].
==See also==
*[[Gibbs-Duhem integration]]
==References==
<references/>
#[http://dx.doi.org/10.1103/RevModPhys.48.587      J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics '''48''' pp. 587 - 671 (1976)]
#[http://dx.doi.org/10.1088/0953-8984/20/15/153101  C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter '''20''' 153101 (2008)] (section 4)
'''Related reading'''
*[http://dx.doi.org/10.1063/1.3023062 Enrique de Miguel "Estimating errors in free energy calculations from thermodynamic integration using fitted data", Journal of Chemical Physics '''129''' 214112 (2008)]
*[http://dx.doi.org/10.1063/1.4921884 Maria Concetta Abramo, Carlo Caccamo, Dino Costa, Paolo V. Giaquinta, Gianpietro Malescio, Gianmarco Munaò, and Santi Prestipino "On the determination of phase boundaries via thermodynamic integration across coexistence regions", Journal of Chemical Physics '''142''' 214502 (2015)]
*[http://dx.doi.org/10.1063/1.4979493 J. D. Doll, P. Dupuis, and P. Nyquist "Thermodynamic integration methods, infinite swapping, and the calculation of generalized averages", Journal of Chemical Physics '''146''' 134111 (2017)]
 
 
[[category:classical thermodynamics]]

Latest revision as of 15:33, 20 April 2017

Thermodynamic integration is used to calculate the difference in the Helmholtz energy function, , between two states. The path must be continuous and reversible, i.e., the system must evolve through a succession of equilibrium states (Ref. 1 Eq. 3.5)

Isothermal integration[edit]

At constant temperature (Ref. 2 Eq. 5):

Isobaric integration[edit]

At constant pressure (Ref. 2 Eq. 6):

where is the Gibbs energy function and is the enthalpy.

Isochoric integration[edit]

At constant volume (Ref. 2 Eq. 7):

where is the internal energy.

See also[edit]

References[edit]

  1. J. A. Barker and D. Henderson "What is "liquid"? Understanding the states of matter ", Reviews of Modern Physics 48 pp. 587 - 671 (1976)
  2. C. Vega, E. Sanz, J. L. F. Abascal and E. G. Noya "Determination of phase diagrams via computer simulation: methodology and applications to water, electrolytes and proteins", Journal of Physics: Condensed Matter 20 153101 (2008) (section 4)

Related reading