2022: SklogWiki celebrates 15 years on-line

Difference between revisions of "TIP4P/Ice model of water"

From SklogWiki
Jump to: navigation, search
m (Started a section on the Liquid-vapour equilibria)
m (Parameters: Updated image)
Line 3: Line 3:
 
TIP4P/ice is a rigid planar model, having a similar geometry to the Bernal and  Fowler ([[BF]]) model.
 
TIP4P/ice is a rigid planar model, having a similar geometry to the Bernal and  Fowler ([[BF]]) model.
 
==Parameters==
 
==Parameters==
[[Image:Water_empirical1.png|center|300px]]
+
[[Image:Four_site_water_model.png‎|center|400px]]
  
  
Line 15: Line 15:
 
*[[DL_POLY FIELD file for the TIP4P/ice model]]
 
*[[DL_POLY FIELD file for the TIP4P/ice model]]
 
*[[GROMACS topology file for the TIP4P/ice model]]
 
*[[GROMACS topology file for the TIP4P/ice model]]
 +
 
==Liquid-vapour equilibria==
 
==Liquid-vapour equilibria==
 
*[http://dx.doi.org/10.1063/1.2215612 C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics  '''125''' 034503 (2006)]
 
*[http://dx.doi.org/10.1063/1.2215612 C. Vega, J. L. F. Abascal and I. Nezbeda "Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice" Journal of Chemical Physics  '''125''' 034503 (2006)]

Revision as of 18:17, 8 June 2009

The TIP4P/ice model is a re-parameterisation of the original TIP4P potential for simulations of ice phases [1]. TIP4P/ice is a rigid planar model, having a similar geometry to the Bernal and Fowler (BF) model.

Parameters

Four site water model.png


r_{\mathrm {OH}} (Å) \angleHOH , deg \sigma (Å) \epsilon/k (K) q(O) (e) q(H) (e) q(M) (e) r_{\mathrm {OM}} (Å)
0.9572 104.52 3.1668 106.1 0 0.5897 -2q(H) 0.1577

Liquid-vapour equilibria

References

40px-Stop hand nuvola.svg.png This page contains numerical values and/or equations. If you intend to use ANY of the numbers or equations found in SklogWiki in any way, you MUST take them from the original published article or book, and cite the relevant source accordingly.