

(2 intermediate revisions by the same user not shown) 
Line 1: 
Line 1: 
−  The '''stress''' is given by
 +  #REDIRECT[[Pressure#Stress]] 
−   
−  :<math>{\mathbf F} = \sigma_{ij} {\mathbf A}</math>
 
−   
−  where <math>{\mathbf F}</math> is the force,
 
−  <math>{\mathbf A}</math> is the area, and <math>\sigma_{ij}</math> is the stress tensor, given by
 
−   
−  :<math>\sigma_{ij} \equiv \left[{\begin{matrix}
 
−  \sigma _x & \tau _{xy} & \tau _{xz} \\
 
−  \tau _{yx} & \sigma _y & \tau _{yz} \\
 
−  \tau _{zx} & \tau _{zy} & \sigma _z \\
 
−  \end{matrix}}\right]</math>
 
−   
−  where where <math>\ \sigma_{x}</math>, <math>\ \sigma_{y}</math>, and <math>\ \sigma_{z}</math> are normal stresses, and <math>\ \tau_{xy}</math>, <math>\ \tau_{xz}</math>, <math>\ \tau_{yx}</math>, <math>\ \tau_{yz}</math>, <math>\ \tau_{zx}</math>, and <math>\ \tau_{zy}</math> are shear stresess.
 
−  ==References==
 
−  <references/>
 
−  '''Related reading'''
 
−  *[http://dx.doi.org/10.1063/1.3245303 Aidan P. Thompson, Steven J. Plimpton, and William Mattson "General formulation of pressure and stress tensor for arbitrary manybody interaction potentials under periodic boundary conditions", Journal of Chemical Physics '''131''' 154107 (2009)]
 
−  [[category: classical mechanics]]
 