Stokes-Einstein relation: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Added a recent publication)
m (Added a DOI)
 
Line 1: Line 1:
The '''Stokes-Einstein relation''', originally derived by William Sutherland <ref>William Sutherland "A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin", Philosophical Magazine  '''9''' pp. 781-785 (1905)</ref> but almost simultaneously published by [[Albert Einstein |Einstein]] <ref>[http://dx.doi.org/10.1002/andp.19053220806 A. Einstein "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen", Annalen der Physik '''17''' pp. 549-560 (1905)]</ref>, states that, for a sphere of radius <math>R</math> immersed in a fluid,
The '''Stokes-Einstein relation''', originally derived by William Sutherland <ref>[http://dx.doi.org/10.1080/14786440509463331 William Sutherland "A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin", Philosophical Magazine  '''9''' pp. 781-785 (1905)]</ref> but almost simultaneously published by [[Albert Einstein |Einstein]] <ref>[http://dx.doi.org/10.1002/andp.19053220806 A. Einstein "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen", Annalen der Physik '''17''' pp. 549-560 (1905)]</ref>, states that, for a sphere of radius <math>R</math> immersed in a fluid,


:<math> D=\frac{k_B T}{6\pi\eta R}, </math>
:<math> D=\frac{k_B T}{6\pi\eta R}, </math>

Latest revision as of 13:28, 14 October 2011

The Stokes-Einstein relation, originally derived by William Sutherland [1] but almost simultaneously published by Einstein [2], states that, for a sphere of radius immersed in a fluid,

where D is the diffusion constant, is the Boltzmann constant, T is the temperature and is the viscosity. Sometimes, the name is given to the general relation:

where is the mobility. This, coupled with Stokes' law for the drag upon a sphere moving though a fluid:

produces the first equation.

References[edit]

Related reading