SPC/E model of water

From SklogWiki
Revision as of 17:10, 23 November 2023 by Oliveirajs (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
This article is a 'stub' about water and/or ice. It has no, or next to no, content. It is here at the moment to help form part of the structure of SklogWiki. If you add material to this article, remove the {{Stub-water}} template from this page.

The SPC/E (extended simple point charge model) [1] [2] is a slight reparameterisation of the SPC model of water, with a modified value for . The molecule is modelled as a rigid isosceles triangle, having charges situated on each of the three atoms. Apart from Coulombic interactions, the molecules interact via long-range Lennard-Jones sites, situated on the oxygen atoms. The parameters are as follows:

parameter value
kJ mol-1
(charge neutrality)

The SPC/E model has a dipole moment of 2.351 D. (Ref. 1 Table I).

Surface tension[edit]

The surface tension has been studied for the SPC/E model by Vega and Miguel [3]

Phase diagram[edit]

Plastic crystal phases[edit]

Recent simulations have demonstrated the existence of plastic crystal phases for the SPC/E model. [4] [5]

Shear viscosity[edit]

The shear viscosity for the SPC/E model is 0.729 mPa.s at 298 K and 1 bar [6] (experimental value 0.896 mPa.s [7]).

Thermal conductivity[edit]

Thermal conductivity [8].


  1. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma "The missing term in effective pair potentials", Journal of Physical Chemistry 91 pp. 6269 - 6271 (1987)
  2. Swaroop Chatterjee, Pablo G. Debenedetti, Frank H. Stillinger, and Ruth M. Lynden-Bell "A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models", Journal of Chemical Physics 128 124511 (2008)
  3. C. Vega and E. de Miguel "Surface tension of the most popular models of water by using the test-area simulation method", Journal of Chemical Physics 126 154707 (2007)
  4. J. L. Aragones and C. Vega "Plastic crystal phases of simple water models", Journal of Chemical Physics 130 244504 (2009)
  5. I. Skarmoutsos, A. Henao, J. Samios and E. Guardia "On the Different Faces of the Supercritical Phase of Water at a Near-Critical Temperature: Pressure-Induced Structural Transitions Ranging from a Gaslike Fluid to a Plastic Crystal Polymorph", Journal of Physical Chemistry B 125 10260 (2022)
  6. Miguel Angel González and José L. F. Abascal "The shear viscosity of rigid water models", Journal of Chemical Physics 132 096101 (2010)
  7. Kenneth R. Harris and Lawrence A. Woolf "Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures", Journal of Chemical & Engineering Data 49 pp. 1064-1069 (2004)
  8. Frank Römer, Anders Lervik, and Fernando Bresme "Nonequilibrium molecular dynamics simulations of the thermal conductivity of water: A systematic investigation of the SPC/E and TIP4P/2005 models", Journal of Chemical Physics 137 074503 (2012)
Related reading