Editing Radial distribution function

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
The '''radial distribution function''' is a special case of the  [[pair distribution function]] for an isotropic system.
A [[Fourier analysis | Fourier transform]] of the radial distribution function results in the [[structure factor]], which is experimentally measurable. The following plot is of a typical radial distribution function for the monatomic [[Lennard-Jones model |Lennard-Jones]] liquid.
[[Image:LJ_rdf.png|center|450px|Typical radial distribution function for the monatomic Lennard-Jones liquid.]]
==Density Expansion of the radial distribution function==
==Density Expansion of the radial distribution function==
The  '''radial distribution function''' of a compressed gas may be expanded in powers of the density <ref>[http://dx.doi.org/10.1103/PhysRev.85.777  B. R. A. Nijboer and L. Van Hove "Radial Distribution Function of a Gas of Hard Spheres and the Superposition Approximation", Physical Review '''85''' pp. 777-783 (1952)]</ref>
The  '''radial distribution function''' of a compressed gas may be expanded in powers of the density (Ref. 2)


:<math>\left. {\rm g}(r) \right. = e^{-\beta \Phi(r)} (1 + \rho {\rm g}_1 (r) + \rho^2 {\rm g}_2 (r) + ...)</math>
:<math>\left. {\rm g}(r) \right. = e^{-\beta \Phi(r)} (1 + \rho {\rm g}_1 (r) + \rho^2 {\rm g}_2 (r) + ...)</math>
Line 14: Line 11:
In classical mechanics, and on the assumption of additivity of intermolecular forces, one has
In classical mechanics, and on the assumption of additivity of intermolecular forces, one has


:<math>{\rm g}_1 (r_{12})= \int f (r_{13}) f(r_{23}) ~{\rm d}{\mathbf r}_3</math>
:<math>{\rm g}_1 (r_{12})= \int f (r_{13}) f(r_{23}) ~{\rm d}r_3</math>




Line 20: Line 17:
+ 2\psi (r_{12}) + \frac{1}{2} \chi (r_{12})</math>
+ 2\psi (r_{12}) + \frac{1}{2} \chi (r_{12})</math>


where <math>r_{ik}</math> is the distance <math>|{\mathbf r}_i -{\mathbf r}_k|</math>, where <math>f(r)</math>
where <math>r_{ik}</math> is the distance <math>|r_i -r_k|</math>, where <math>f(r)</math>
is the [[Mayer f-function]]
is the [[Mayer f-function]]


Line 27: Line 24:
and
and


:<math>\varphi (r_{12}) = \int  f (r_{13})  f (r_{24})  f (r_{34}) ~ {\rm d}{\mathbf r}_3 {\rm d}{\mathbf r}_4</math>
:<math>\varphi (r_{12}) = \int  f (r_{13})  f (r_{24})  f (r_{34}) ~ {\rm d}r_3 {\rm d}r_4</math>


:<math>\psi (r_{12})  = \int  f (r_{13}) f (r_{23})  f (r_{24}) f (r_{34}) ~ {\rm d}{\mathbf r}_3 {\rm d}{\mathbf r}_4</math>
:<math>\psi (r_{12})  = \int  f (r_{13}) f (r_{23})  f (r_{24}) f (r_{34}) ~ {\rm d}r_3 {\rm d}r_4</math>


:<math>\chi (r_{12})  = \int  f (r_{13}) f (r_{23}) f (r_{14}) f (r_{24}) f (r_{34}) ~ {\rm d}{\mathbf r}_3 {\rm d}{\mathbf r}_4</math>
:<math>\chi (r_{12})  = \int  f (r_{13}) f (r_{23}) f (r_{14}) f (r_{24}) f (r_{34}) ~ {\rm d}r_3 {\rm d}r_4</math>
==See also==
*[[Pair distribution function]]
*[[Total correlation function]]
==References==
==References==
<references/>
#[http://dx.doi.org/10.1063/1.1723737    John G. Kirkwood and Elizabeth Monroe Boggs "The Radial Distribution Function in Liquids", Journal of Chemical Physics '''10''' pp. 394-402 (1942)]
;Related reading
#[http://dx.doi.org/10.1103/PhysRev.85.777 B. R. A. Nijboer and L. Van Hove "Radial Distribution Function of a Gas of Hard Spheres and the Superposition Approximation", Physical Review '''85''' pp. 777 - 783 (1952)]
*[http://dx.doi.org/10.1063/1.1723737    John G. Kirkwood and Elizabeth Monroe Boggs "The Radial Distribution Function in Liquids", Journal of Chemical Physics '''10''' pp. 394-402 (1942)]
*[http://dx.doi.org/10.1063/1.1703948 J. L. Lebowitz and J. K. Percus "Asymptotic Behavior of the Radial Distribution Function", Journal of Mathematical Physics '''4''' pp. 248-254 (1963)]
*[http://dx.doi.org/10.1063/1.1725652 B. Widom "On the Radial Distribution Function in Fluids", Journal of Chemical Physics '''41''' pp. 74-77 (1964)]
*[http://dx.doi.org/10.1143/JPSJ.12.326 Kazuo Hiroike "Radial Distribution Function of Fluids I", Journal of the Physical Society of Japan '''12''' pp. 326-334 (1957)]
*[http://dx.doi.org/10.1143/JPSJ.12.864 Kazuo Hiroike "Radial Distribution Function of Fluids II", Journal of the Physical Society of Japan '''12''' pp. pp. 864-873 (1957)]
*[http://dx.doi.org/10.1080/00268970701678907 J. G. Malherbe and W. Krauth "Selective-pivot sampling of radial distribution functions in asymmetric liquid mixtures", Molecular Physics '''105''' pp. 2393-2398 (2007)]
*[http://doi.org/10.1063/1.4973804 Sergey V. Sukhomlinov, Martin H. Müser "Determination of accurate, mean bond lengths from radial distribution functions", Journal of Chemical Physics '''146''' 024506 (2017)]
 


[[category: statistical mechanics]]
[[category: statistical mechanics]]
Please note that all contributions to SklogWiki are considered to be released under the Creative Commons Attribution Non-Commercial Share Alike (see SklogWiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

To edit this page, please answer the question that appears below (more info):

Cancel Editing help (opens in new window)