Difference between revisions of "Periodic boundary conditions"

From SklogWiki
Jump to: navigation, search
m (Added an internal link)
m (Updated external link)
Line 1: Line 1:
A liquid, in the [[thermodynamic limit]], would occupy an infinite volume. It is common experience that one can perfectly well obtain the thermodynamic properties of a material from a more modest sample. However, even a droplet has more atoms or molecules than one can possibly hope to introduce into ones [[Computer simulation techniques | computer simulation]]. Thus to simulate a bulk sample of liquid it is common practice to use a 'trick' known as '''periodic boundary conditions'''. If one has a cube of atoms/molecules, the molecule leaving one side enters on the diametrically opposite side. This is analogous to the arcade video game Asteriods <ref>[http://www.atari.com/arcade/asteroids play the official on-line version from Atari]</ref>, where one can imagine the action takes place on the surface of a torus.
+
A liquid, in the [[thermodynamic limit]], would occupy an infinite volume. It is common experience that one can perfectly well obtain the thermodynamic properties of a material from a more modest sample. However, even a droplet has more atoms or molecules than one can possibly hope to introduce into ones [[Computer simulation techniques | computer simulation]]. Thus to simulate a bulk sample of liquid it is common practice to use a 'trick' known as '''periodic boundary conditions'''. If one has a cube of atoms/molecules, the molecule leaving one side enters on the diametrically opposite side. This is analogous to the arcade video game Asteriods <ref>[http://www.atari.com/arcade/asteroids#!/arcade/asteroids/play play the official on-line version from Atari]</ref>, where one can imagine the action takes place on the surface of a torus.
 
In general, a simulation box whose dimensions are several times the range of the interaction potential works well for equilibrium properties, although in the region of a [[phase transitions |phase transition]], where long-range fluctuations play an important role, problems may arise. In [[confined systems]] periodicity is only required in some spacial dimensions.
 
In general, a simulation box whose dimensions are several times the range of the interaction potential works well for equilibrium properties, although in the region of a [[phase transitions |phase transition]], where long-range fluctuations play an important role, problems may arise. In [[confined systems]] periodicity is only required in some spacial dimensions.
 
==List of periodic boundary conditions==
 
==List of periodic boundary conditions==

Revision as of 13:11, 2 April 2014

A liquid, in the thermodynamic limit, would occupy an infinite volume. It is common experience that one can perfectly well obtain the thermodynamic properties of a material from a more modest sample. However, even a droplet has more atoms or molecules than one can possibly hope to introduce into ones computer simulation. Thus to simulate a bulk sample of liquid it is common practice to use a 'trick' known as periodic boundary conditions. If one has a cube of atoms/molecules, the molecule leaving one side enters on the diametrically opposite side. This is analogous to the arcade video game Asteriods [1], where one can imagine the action takes place on the surface of a torus. In general, a simulation box whose dimensions are several times the range of the interaction potential works well for equilibrium properties, although in the region of a phase transition, where long-range fluctuations play an important role, problems may arise. In confined systems periodicity is only required in some spacial dimensions.

List of periodic boundary conditions

Cubic

Orthorhombic

Parallelepiped

Truncated octahedral

[2]

Rhombic dodecahedral

[2]

Slab

Hexagonal prism

See also

References

Related reading

External resources