Ornstein-Zernike relation from the grand canonical distribution function: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
No edit summary
mNo edit summary
Line 1: Line 1:
Defining the local activity by
Defining the local activity by


:<math>\left. z(r) \right. =z\exp[-\beta\psi(r)]</math>
:<math>z({\mathbf r})=z\exp[-\beta\psi({\mathbf r})]</math>


where <math>\beta=1/k_BT</math>, and <math>k_B</math> is the [[Boltzmann constant]].
where <math>\beta=1/k_BT</math>, and <math>k_B</math> is the [[Boltzmann constant]].
Line 7: Line 7:




:<math>\Xi=\sum_N^\infty{1\over N!}\int\dots\int \prod_i^Nz( r_i)\exp(-\beta U_N)dr_1\dots dr_N</math>.
:<math>\Xi=\sum_N^\infty{1\over N!}\int\dots\int \prod_i^Nz({\mathbf r}_i)\exp(-\beta U_N){\rm d}{\mathbf r}_1\dots{\rm d}{\mathbf r}_N</math>.




By functionally-differentiating <math>\Xi</math>  with respect to <math>z(r)</math>, and utilizing the mathematical theorem concerning the functional derivative,
By functionally-differentiating <math>\Xi</math>  with respect to <math>z({\mathbf r})</math>, and utilizing the mathematical theorem concerning the functional derivative,




:<math>{\delta z(r)\over{\delta z(r')}}=\delta(r-r')</math>,
:<math>{\delta z({\mathbf r})\over{\delta z({\mathbf r'})}}=\delta({\mathbf r}-{\mathbf r'})</math>,




we get the following equations with respect to the density pair correlation functions.
we obtain the following equations with respect to the [[density pair correlation functions]]:




:<math>\rho(r)={\delta\ln\Xi\over{\delta \ln z(r)}}</math>,
:<math>\rho({\mathbf r})={\delta\ln\Xi\over{\delta \ln z({\mathbf r})}}</math>,




:<math>\rho^{(2)}(r,r')={\delta^2\ln\Xi\over{\delta \ln z(r)\delta\ln z(r')}}</math>.
:<math>\rho^{(2)}({\mathbf r},{\mathbf r}')={\delta^2\ln\Xi\over{\delta \ln z({\mathbf r})\delta\ln z({\mathbf r'})}}</math>.




A relation between <math>\rho(r)</math> and <math>\rho^{(2)}(r,r')</math> can be obtained after some manipulation as,
A relation between <math>\rho({\mathbf r})</math> and <math>\rho^{(2)}({\mathbf r},{\mathbf r}')</math> can be obtained after some manipulation as,




:<math>{\delta\rho(r)\over{\delta \ln z(r')}}=\rho^{(2)}(r,r')-\rho(r)\rho(r')+\delta(r-r')\rho(r).</math>
:<math>{\delta\rho({\mathbf r})\over{\delta \ln z({\mathbf r'})}}=\rho^{(2)}({\mathbf r,r'})-\rho({\mathbf r})\rho({\mathbf r'})+\delta({\mathbf r}-{\mathbf r'})\rho({\mathbf r})</math>.




Line 34: Line 34:




:<math>{\delta \ln z(r)\over{\delta\rho(r')}}={\delta(r-r')\over{\rho(r')}} -c(r,r').</math>
:<math>{\delta \ln z({\mathbf r})\over{\delta\rho({\mathbf r'})}}={\delta({\mathbf r}-{\mathbf r'})\over{\rho({\mathbf r'})}}</math>.




Inserting these two reults into the chain-rule theorem of functional derivatives,
Inserting these two results into the chain-rule theorem of functional derivatives,




:<math>\int{\delta\rho(r)\over{\delta \ln z(r^{\prime\prime})}}{\delta \ln z(r^{\prime\prime})\over{\delta\rho(r')}}dr^{\prime\prime}=\delta(r-r')</math>,
:<math> \int{\delta\rho({\mathbf r})\over{\delta \ln z({\mathbf r}^{\prime\prime})}}{\delta \ln z({\mathbf r}^{\prime\prime})\over{\delta\rho({\mathbf r'})}}{\rm d}{\mathbf r}^{\prime\prime}=\delta({\mathbf r}-{\mathbf r'})</math>,




one obtains the [[Ornstein-Zernike relation]].
one obtains the [[Ornstein-Zernike relation]].
Thus the Ornstein-Zernike relation is,
Thus the Ornstein-Zernike relation is, in a sense, a differential form of the partition function.
in a sense, a differential form of the partition function.
 
==See also==
==See also==
*[http://dx.doi.org/10.1209/epl/i2001-00270-x  J. A. White and S. Velasco "The Ornstein-Zernike equation in the canonical ensemble", Europhysics Letters '''54''' pp. 475-481 (2001)]
*[http://dx.doi.org/10.1209/epl/i2001-00270-x  J. A. White and S. Velasco "The Ornstein-Zernike equation in the canonical ensemble", Europhysics Letters '''54''' pp. 475-481 (2001)]
==References==
[[Category:Integral equations]]
[[Category:Integral equations]]

Revision as of 17:06, 10 July 2007

Defining the local activity by

where , and is the Boltzmann constant. Using those definitions the grand canonical partition function can be written as


.


By functionally-differentiating with respect to , and utilizing the mathematical theorem concerning the functional derivative,


,


we obtain the following equations with respect to the density pair correlation functions:


,


.


A relation between and can be obtained after some manipulation as,


.


Now, we define the direct correlation function by an inverse relation of the previous equation,


.


Inserting these two results into the chain-rule theorem of functional derivatives,


,


one obtains the Ornstein-Zernike relation. Thus the Ornstein-Zernike relation is, in a sense, a differential form of the partition function.

See also

References