Order parameters: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
m (Started section on the tetrahedral order parameter.)
m (Added a recent publication)
 
Line 6: Line 6:
*Shear modulus
*Shear modulus
==Isotropic-nematic transition==
==Isotropic-nematic transition==
The '''uniaxial order parameter''' is zero for an isotropic fluid and one for
The '''uniaxial order parameter''' is zero for an isotropic fluid and one for a perfectly aligned system. First one calculates  a director vector <ref>[http://dx.doi.org/10.1080/00268978400101951 R. Eppenga and D. Frenkel "Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets", Molecular Physics '''52''' pp. 1303-1334  (1984)]</ref>
a perfectly aligned system.
First one calculates  a director
vector (see Ref. 2)


:<math>Q_{\alpha \beta}
:<math>Q_{\alpha \beta}
Line 26: Line 23:
with the largest eigenvalue (<math>\lambda_+</math>).
with the largest eigenvalue (<math>\lambda_+</math>).
From this director vector the nematic order
From this director vector the nematic order
parameter is calculated from (Ref. 5)
parameter is calculated from <ref>[http://dx.doi.org/10.1002/mats.1992.040010402 Anna A. Mercurieva, Tatyana M. Birshtein "Liquid-crystalline ordering in two-dimensional systems with discrete symmetry", Die Makromolekulare Chemie, Theory and Simulations '''1''' pp. 205-214 (1992)]</ref>
 
:<math>S_2 =\frac{d \langle \cos^2 \theta \rangle -1}{d-1}</math>
:<math>S_2 =\frac{d \langle \cos^2 \theta \rangle -1}{d-1}</math>


where ''d'' is the dimensionality of the system.
where ''d'' is the dimensionality of the system.


i.e. in three dimensions (see Ref. 3)
i.e. in three dimensions <ref>[http://dx.doi.org/10.1016/0167-7322(95)00918-3 Mark R. Wilson  "Determination of order parameters in realistic atom-based models of liquid crystal systems", Journal of Molecular Liquids '''68''' pp. 23-31 (1996)]</ref>


:<math>S_2 = \lambda _{+}= \langle P_2( n \cdot e)\rangle = \langle P_2(\cos\theta )\rangle =\langle \frac{3}{2} \cos^{2} \theta - \frac{1}{2} \rangle
:<math>S_2 = \lambda _{+}= \langle P_2( n \cdot e)\rangle = \langle P_2(\cos\theta )\rangle =\langle \frac{3}{2} \cos^{2} \theta - \frac{1}{2} \rangle
Line 44: Line 40:
indicate an ensemble average.
indicate an ensemble average.
==Tetrahedral order parameter==
==Tetrahedral order parameter==
*[http://dx.doi.org/10.1080/002689798169195 P. -L. Chau and A. J. Hardwick "A new order parameter for tetrahedral configurations", Molecular Physics '''93''' pp. 511-518 (1998)]
<ref>[http://dx.doi.org/10.1080/002689798169195 P. -L. Chau and A. J. Hardwick "A new order parameter for tetrahedral configurations", Molecular Physics '''93''' pp. 511-518 (1998)]</ref>
==See also==
==See also==
*[[Landau theory of second-order phase transitions]]
*[[Landau theory of second-order phase transitions]]
==References==
==References==
#[http://dx.doi.org/10.1103/PhysRevA.10.1881  Joseph P. Straley "Ordered phases of a liquid of biaxial particles", Physical Review A '''10''' pp. 1881 - 1887 (1974)]
<references/>
#[http://dx.doi.org/10.1080/00268978400101951 R. Eppenga and D. Frenkel "Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets", Molecular Physics '''52''' pp. 1303-1334  (1984)]
;Related reading
#[http://dx.doi.org/10.1016/0167-7322(95)00918-3 Mark R. Wilson  "Determination of order parameters in realistic atom-based models of liquid crystal systems", Journal of Molecular Liquids '''68''' pp. 23-31 (1996)]
*[http://dx.doi.org/10.1103/PhysRevA.10.1881  Joseph P. Straley "Ordered phases of a liquid of biaxial particles", Physical Review A '''10''' pp. 1881 - 1887 (1974)]
#[http://dx.doi.org/10.1063/1.479982      Denis Merlet, James W. Emsley,    Philippe Lesot and Jacques Courtieu "The relationship between molecular symmetry and second-rank orientational order parameters for molecules in chiral liquid crystalline solvents", Journal of Chemical Physics '''111''' pp. 6890-6896 (1999)]
*[http://dx.doi.org/10.1063/1.479982      Denis Merlet, James W. Emsley,    Philippe Lesot and Jacques Courtieu "The relationship between molecular symmetry and second-rank orientational order parameters for molecules in chiral liquid crystalline solvents", Journal of Chemical Physics '''111''' pp. 6890-6896 (1999)]
#[http://dx.doi.org/10.1002/mats.1992.040010402 Anna A. Mercurieva, Tatyana M. Birshtein "Liquid-crystalline ordering in two-dimensional systems with discrete symmetry", Die Makromolekulare Chemie, Theory and Simulations '''1''' pp. 205 - 214 (1992)]
*[http://dx.doi.org/10.1063/1.3548889  Erik E. Santiso and Bernhardt L. Trout "A general set of order parameters for molecular crystals", Journal of Chemical Physics '''134''' 064109 (2011)]
[[category: liquid crystals]]
[[category: liquid crystals]]

Latest revision as of 12:47, 15 February 2011

An order parameter is some observable physical quantity that is able to distinguish between two distinct phases. The choice of order parameter is not necessarily unique.

Solid-liquid transition[edit]

Possible choices:

  • Fourier transform of the density
  • Shear modulus

Isotropic-nematic transition[edit]

The uniaxial order parameter is zero for an isotropic fluid and one for a perfectly aligned system. First one calculates a director vector [1]

where is a second rank tensor, is a unit vector along the molecular long axis, and is the Kronecker delta. Diagonalisation of this tensor gives three eigenvalues , and , and is the eigenvector associated with the largest eigenvalue (). From this director vector the nematic order parameter is calculated from [2]

where d is the dimensionality of the system.

i.e. in three dimensions [3]

where is known as the uniaxial order parameter. Here is the second order Legendre polynomial, is the angle between a molecular axes and the director , and the angle brackets indicate an ensemble average.

Tetrahedral order parameter[edit]

[4]

See also[edit]

References[edit]

Related reading