Order parameters: Difference between revisions

From SklogWiki
Jump to navigation Jump to search
mNo edit summary
m (Added a recent publication)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Liquid crystals==
An '''order parameter''' is some observable physical quantity that is able to distinguish between
The '''uniaxial order parameter''' is zero for an isotropic fluid and one for
two distinct phases. The choice of order parameter is not  necessarily unique.
a perfectly aligned system.
==Solid-liquid transition==
First one calculates  a director
Possible choices:
vector (see Ref. 2)
*Fourier transform of the density
*Shear modulus
==Isotropic-nematic transition==
The '''uniaxial order parameter''' is zero for an isotropic fluid and one for a perfectly aligned system. First one calculates  a director vector <ref>[http://dx.doi.org/10.1080/00268978400101951 R. Eppenga and D. Frenkel "Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets", Molecular Physics '''52''' pp. 1303-1334  (1984)]</ref>


:<math>Q_{\alpha \beta}
:<math>Q_{\alpha \beta}
Line 20: Line 23:
with the largest eigenvalue (<math>\lambda_+</math>).
with the largest eigenvalue (<math>\lambda_+</math>).
From this director vector the nematic order
From this director vector the nematic order
parameter is calculated from (Ref. 5)
parameter is calculated from <ref>[http://dx.doi.org/10.1002/mats.1992.040010402 Anna A. Mercurieva, Tatyana M. Birshtein "Liquid-crystalline ordering in two-dimensional systems with discrete symmetry", Die Makromolekulare Chemie, Theory and Simulations '''1''' pp. 205-214 (1992)]</ref>
 
:<math>S_2 =\frac{d \langle \cos^2 \theta \rangle -1}{d-1}</math>
:<math>S_2 =\frac{d \langle \cos^2 \theta \rangle -1}{d-1}</math>


where ''d'' is the dimensionality of the system.
where ''d'' is the dimensionality of the system.


i.e. in three dimensions (see Ref. 3)
i.e. in three dimensions <ref>[http://dx.doi.org/10.1016/0167-7322(95)00918-3 Mark R. Wilson  "Determination of order parameters in realistic atom-based models of liquid crystal systems", Journal of Molecular Liquids '''68''' pp. 23-31 (1996)]</ref>


:<math>S_2 = \lambda _{+}= \langle P_2( n \cdot e)\rangle = \langle P_2(\cos\theta )\rangle =\langle \frac{3}{2} \cos^{2} \theta - \frac{1}{2} \rangle
:<math>S_2 = \lambda _{+}= \langle P_2( n \cdot e)\rangle = \langle P_2(\cos\theta )\rangle =\langle \frac{3}{2} \cos^{2} \theta - \frac{1}{2} \rangle
Line 37: Line 39:
the director <math>n</math>, and the angle brackets
the director <math>n</math>, and the angle brackets
indicate an ensemble average.
indicate an ensemble average.
 
==Tetrahedral order parameter==
<ref>[http://dx.doi.org/10.1080/002689798169195 P. -L. Chau and A. J. Hardwick "A new order parameter for tetrahedral configurations", Molecular Physics '''93''' pp. 511-518 (1998)]</ref>
==See also==
==See also==
*[[Landau theory of second-order phase transitions]]
*[[Landau theory of second-order phase transitions]]
==References==
==References==
#[http://dx.doi.org/10.1103/PhysRevA.10.1881  Joseph P. Straley "Ordered phases of a liquid of biaxial particles", Physical Review A '''10''' pp. 1881 - 1887 (1974)]
<references/>
#[http://dx.doi.org/10.1080/00268978400101951 R. Eppenga and D. Frenkel "Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets", Molecular Physics '''52''' pp. 1303-1334  (1984)]
;Related reading
#[http://dx.doi.org/10.1016/0167-7322(95)00918-3 Mark R. Wilson  "Determination of order parameters in realistic atom-based models of liquid crystal systems", Journal of Molecular Liquids '''68''' pp. 23-31 (1996)]
*[http://dx.doi.org/10.1103/PhysRevA.10.1881  Joseph P. Straley "Ordered phases of a liquid of biaxial particles", Physical Review A '''10''' pp. 1881 - 1887 (1974)]
#[http://dx.doi.org/10.1063/1.479982      Denis Merlet, James W. Emsley,    Philippe Lesot and Jacques Courtieu "The relationship between molecular symmetry and second-rank orientational order parameters for molecules in chiral liquid crystalline solvents", Journal of Chemical Physics '''111''' pp. 6890-6896 (1999)]
*[http://dx.doi.org/10.1063/1.479982      Denis Merlet, James W. Emsley,    Philippe Lesot and Jacques Courtieu "The relationship between molecular symmetry and second-rank orientational order parameters for molecules in chiral liquid crystalline solvents", Journal of Chemical Physics '''111''' pp. 6890-6896 (1999)]
#[http://dx.doi.org/10.1002/mats.1992.040010402 Anna A. Mercurieva, Tatyana M. Birshtein "Liquid-crystalline ordering in two-dimensional systems with discrete symmetry", Die Makromolekulare Chemie, Theory and Simulations '''1''' pp. 205 - 214 (1992)]
*[http://dx.doi.org/10.1063/1.3548889  Erik E. Santiso and Bernhardt L. Trout "A general set of order parameters for molecular crystals", Journal of Chemical Physics '''134''' 064109 (2011)]
[[category: liquid crystals]]
[[category: liquid crystals]]

Latest revision as of 12:47, 15 February 2011

An order parameter is some observable physical quantity that is able to distinguish between two distinct phases. The choice of order parameter is not necessarily unique.

Solid-liquid transition[edit]

Possible choices:

  • Fourier transform of the density
  • Shear modulus

Isotropic-nematic transition[edit]

The uniaxial order parameter is zero for an isotropic fluid and one for a perfectly aligned system. First one calculates a director vector [1]

where is a second rank tensor, is a unit vector along the molecular long axis, and is the Kronecker delta. Diagonalisation of this tensor gives three eigenvalues , and , and is the eigenvector associated with the largest eigenvalue (). From this director vector the nematic order parameter is calculated from [2]

where d is the dimensionality of the system.

i.e. in three dimensions [3]

where is known as the uniaxial order parameter. Here is the second order Legendre polynomial, is the angle between a molecular axes and the director , and the angle brackets indicate an ensemble average.

Tetrahedral order parameter[edit]

[4]

See also[edit]

References[edit]

Related reading