Difference between revisions of "Mie potential"

From SklogWiki
Jump to: navigation, search
m (Second virial coefficient: Added a recent publication)
m (Second virial coefficient: Added lint to an Erratum)
Line 18: Line 18:
 
<ref>[http://dx.doi.org/10.1063/1.4961653  D. M. Heyes, G. Rickayzen, S. Pieprzyk and A. C. Brańka "The second virial coefficient and critical point behavior of the Mie Potential", Journal of Chemical Physics '''145''' 084505 (2016)]</ref>
 
<ref>[http://dx.doi.org/10.1063/1.4961653  D. M. Heyes, G. Rickayzen, S. Pieprzyk and A. C. Brańka "The second virial coefficient and critical point behavior of the Mie Potential", Journal of Chemical Physics '''145''' 084505 (2016)]</ref>
 
<ref>[https://doi.org/10.1063/1.5006035 D. M. Heyes and T. Pereira de Vasconcelos "The second virial coefficient of bounded Mie potentials", Journal of Chemical Physics '''147''' 214504 (2017)]</ref>
 
<ref>[https://doi.org/10.1063/1.5006035 D. M. Heyes and T. Pereira de Vasconcelos "The second virial coefficient of bounded Mie potentials", Journal of Chemical Physics '''147''' 214504 (2017)]</ref>
 +
<ref>[https://doi.org/10.1063/1.5030679 D. M. Heyes and  T. Pereira de Vasconcelos "Erratum: “The second virial coefficient of bounded Mie potentials” <nowiki>[</nowiki>J. Chem. Phys. 147, 214504 (2017)<nowiki>]</nowiki>", Journal of Chemical Physics '''148''' 169903 (2018)]</ref>
 
and the Vliegenthart–Lekkerkerker relation <ref>[http://dx.doi.org/10.1063/1.3578469 V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics '''134''' 144111 (2011)]</ref>.
 
and the Vliegenthart–Lekkerkerker relation <ref>[http://dx.doi.org/10.1063/1.3578469 V. L. Kulinskii "The Vliegenthart–Lekkerkerker relation: The case of the Mie-fluids", Journal of Chemical Physics '''134''' 144111 (2011)]</ref>.
  

Revision as of 11:37, 3 May 2018

The Mie potential was proposed by Gustav Mie in 1903 [1]. It is given by

 \Phi_{12}(r) = \left( \frac{n}{n-m}\right) \left( \frac{n}{m}\right)^{m/(n-m)} \epsilon \left[ \left(\frac{\sigma}{r} \right)^{n}-  \left( \frac{\sigma}{r}\right)^m \right]

where:

Note that when n=12 and m=6 this becomes the Lennard-Jones model.

The location of the potential minimum is given by

 r_{min} = \left( \frac{n}{m} \sigma^{n-m} \right) ^ {1/(n-m)}

(14,7) model

[2] [3]

Second virial coefficient

The second virial coefficient [4] [5] [6] and the Vliegenthart–Lekkerkerker relation [7].

References

Related reading